切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2018, Vol. 07 ›› Issue (04) : 341 -344. doi: 10.3877/cma.j.issn.2095-3232.2018.04.020

所属专题: 文献

综述

下一代基因测序技术在胆囊癌基因组研究中的应用进展
张瑞1, 王林1, 耿智敏1,()   
  1. 1. 710061 西安交通大学第一附属医院肝胆外科
  • 收稿日期:2018-05-07 出版日期:2018-08-10
  • 通信作者: 耿智敏
  • 基金资助:
    国家自然科学基金(81572420)

Progress of next-generation sequencing in genome research of gallbladder carcinoma

Rui Zhang1, Lin Wang1, Zhimin Geng1()   

  • Received:2018-05-07 Published:2018-08-10
  • Corresponding author: Zhimin Geng
引用本文:

张瑞, 王林, 耿智敏. 下一代基因测序技术在胆囊癌基因组研究中的应用进展[J/OL]. 中华肝脏外科手术学电子杂志, 2018, 07(04): 341-344.

Rui Zhang, Lin Wang, Zhimin Geng. Progress of next-generation sequencing in genome research of gallbladder carcinoma[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2018, 07(04): 341-344.

[1]
Hundal R, Shaffer EA. Gallbladder cancer: epidemiology and outcome[J]. Clin Epidemiol, 2014(6):99-109.
[2]
Droege M, Hill B. The Genome Sequencer FLX System-longer reads, more applications, straight forward bioinformatics and more complete data sets[J]. J Biotechnol, 2008, 136(1):3-10.
[3]
Imelfort M, Duran C, Batley J, et al. Discovering genetic polymorphisms in next-generation sequencing data[J]. Plant Biotechnol J, 2009, 7(4):312-317.
[4]
Mardis ER. The impact of next-generation sequencing technology on genetics[J]. Trends Genet, 2008, 24(3):133-141.
[5]
Choi M, Scholl UI, Ji W, et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing[J]. Proc Natl Acad Sci U S A, 2009, 106(45):19096-19101.
[6]
Mertes F, Elsharawy A, Sauer S, et al. Targeted enrichment of genomic DNA regions for next-generation sequencing[J]. Brief Funct Genomics, 2011, 10(6):374-386.
[7]
Kelley RK, Gordan JD, Evason K, et al. Next-generation sequencing (NGS) in an advanced hepatocellular carcinoma (HCC) cohort: analyses of TP53 and CTNNB1[J]. J Clin Oncol, 2016, 34(4 suppl):286.
[8]
Holcombe RF, Xiu J, Pishvaian MJ, et al. Tumor profiling of biliary tract carcinomas to reveal distinct molecular alterations and potential therapeutic targets[J]. J Clin Oncol, 2015, 33(3 suppl):285.
[9]
Allotey LK, Chaiteerakij R, Dhanasekaran R, et al. Sa1716 next generation sequencing and pathway analysis reveals frequent activation of the PI3-K/Akt pathway in gallbladder cancer: potential for targeted therapy[J]. Gastroenterology, 2015, 148(4):S1019.
[10]
Simbolo M, Fassan M, Ruzzenente A, et al. Multigene mutational profiling of cholangiocarcinomas identifies actionable molecular subgroups[J]. Oncotarget, 2014, 5(9):2839-2852.
[11]
Li M, Zhang Z, Li X, et al. Whole-exome and targeted gene sequencing of gallbladder carcinoma identifies recurrent mutations in the ErbB pathway[J]. Nat Genet, 2014, 46(8):872-876.
[12]
Jiao Y, Pawlik TM, Anders RA, et al. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas[J]. Nat Genet, 2013, 45(12):1470-1473.
[13]
Marks EI, Yee NS. Molecular genetics and targeted therapeutics in biliary tract carcinoma[J]. World J Gastroenterol, 2016, 22(4):1335-1347.
[14]
Javle M, Bekaii-Saab T, Jain A, et al. Biliary cancer: utility of next-generation sequencing for clinical management[J]. Cancer, 2016, 122(24):3838-3847.
[15]
Sicklick JK, Fanta PT, Shimabukuro K, et al. Genomics of gallbladder cancer: the case for biomarker-driven clinical trial design[J]. Cancer Metastasis Rev, 2016, 35(2):263-275.
[16]
McCubrey JA, Steelman LS, Chappell WH, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance[J]. Biochim Biophys Acta, 2007, 1773(8):1263-1284.
[17]
Hanada K, Tsuchida A, Iwao T, et al. Gene mutations of K-ras in gallbladder mucosae and gallbladder carcinoma with an anomalous junction of the pancreaticobiliary duct[J]. Am J Gastroenterol, 1999, 94(6):1638-1642.
[18]
Huang WC, Tsai CC, Chan CC. Mutation analysis and copy number changes of KRAS and BRAF genes in Taiwanese cases of biliary tract cholangiocarcinoma[J]. J Formos Med Assoc, 2017, 116(6):464-468.
[19]
Javle M, Rashid A, Churi C, et al. Molecular characterization of gallbladder cancer using somatic mutation profiling[J]. Hum Pathol, 2014, 45(4):701-708.
[20]
Li M, Chen L, Qu Y, et al. Identification of MAP kinase pathways as therapeutic targets in gallbladder carcinoma using targeted parallel sequencing[J]. Oncotarget, 2017, 8(22):36319-36330.
[21]
Samuels Y, Wang Z, Bardelli A, et al. High frequency of mutations of the PIK3CA gene in human cancers[J]. Science, 2004, 304(5670):554.
[22]
Buzzoni R, Pusceddu S, Bajetta E, et al. Activity and safety of RAD001 (everolimus) in patients affected by biliary tract cancer progressing after prior chemotherapy: a phase II ITMO study[J]. Ann Oncol, 2014, 25(8):1597-1603.
[23]
Boku N. HER2-positive gastric cancer[J]. Gastric Cancer, 2014, 17(1):1-12.
[24]
Roa I, de Toro G, Schalper K, et al. Overexpression of the HER2/neu gene: a new therapeutic possibility for patients with advanced gallbladder cancer[J]. Gastrointest Cancer Res, 2014, 7(2):42-48.
[25]
Kumari N, Kapoor VK, Krishnani N, et al. Role of C-erbB2 expression in gallbladder cancer[J]. Indian J Pathol Microbiol, 2012, 55(1):75-79.
[26]
Javle M, Churi C, Kang HC, et al. HER2/neu-directed therapy for biliary tract cancer[J]. J Hematol Oncol, 2015(8):58.
[27]
Keenen B, Qi H, Saladi SV, et al. Heterogeneous SWI/SNF chromatin remodeling complexes promote expression of microphthalmia-associated transcription factor target genes in melanoma[J]. Oncogene, 2010, 29(1):81-92.
[28]
Jones S, Wang TL, Shih IeM, et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma[J]. Science, 2010, 330(6001):228-231.
[29]
Gui Y, Guo G, Huang Y, et al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder[J]. Nat Genet, 2011, 43(9):875-878.
[30]
Zang ZJ, Cutcutache I, Poon SL, et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes[J]. Nat Genet, 2012, 44(5):570-574.
[1] 周容, 张亚萍, 廖宇, 程晓萍, 管玉龙, 潘广玉, 闫杰, 王贤芝, 苟中山, 潘登科, 李巅远. 超声在基因编辑猪-猴异种并联式心脏移植术中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 617-623.
[2] 葛睿, 陈飞, 李杰, 李娟娟, 陈涵. 多基因检测在早期乳腺癌辅助治疗中的应用价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 257-263.
[3] 王聪, 李云涛, 唐甜甜, 王鑫蕊, 吕鑫, 范志刚. 多基因检测对激素受体阳性、HER-2阴性乳腺癌新辅助化疗疗效预测的研究进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 292-296.
[4] 费一鸣, 刘卓, 张丽娟. 组学分析在早产分子机制中的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 504-510.
[5] 奚卫, 王闻卿, 刘玥, 王亚楠, 许学斌. 胃肠炎继发脓毒症感染创伤弧菌ST14514的病原学诊断与文献病例回顾分析[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 293-302.
[6] 丁志翔, 于鹏, 段绍斌. 血浆BRAF基因检测对腹腔镜右半结肠癌D3根治术中行幽门淋巴结清扫的指导价值[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 570-573.
[7] 刘文竹, 唐窈, 刘付臣. 诱导多潜能干细胞在神经肌肉疾病研究中的应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 367-373.
[8] 王庭宇, 邵联波, 刘珊, 沈振亚. Stanford A 型主动脉夹层相关基因KIF20A 的共表达网络构建及作用靶点分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 303-312.
[9] 王向丽, 吴涛, 毛东锋, 刘恒, 刘文慧, 周芮, 田红娟. 异基因造血干细胞移植治疗ANKRD26相关性血小板减少症1例并文献复习[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 236-238.
[10] 李京, 牛博, 刘晓蓓, 魏新雪, 黄荣. circ-SESN2 沉默靶向调控miRNA-23a-5p/ULK1 在神经细胞氧化应激损伤中的作用机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 263-272.
[11] 薛文, 刘卓, 贾卫华, 张小义, 刘进, 王爱国, 冯志刚, 杨鑫, 田祺, 段虎斌. 大鼠脊髓损伤后降钙素基因相关肽及神经元钙超载的变化及相关性分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 198-205.
[12] 陈倩倩, 袁晨, 刘基, 尹婷婷. 多层螺旋CT 参数、癌胚抗原、错配修复基因及病理指标对结直肠癌预后的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 507-511.
[13] 丁富贵, 吴泽涛, 董卫国. 家族性腺瘤性息肉病临床特征及生物信息学分析[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 512-518.
[14] 胡静, 杨秀锦, 侯志云. HBV感染患者外周血ISGs表达水平变化及其与干扰素治疗疗效的关系[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(04): 343-347.
[15] 李玺, 蔡芸莹, 张永红, 苏恒. 假性软骨发育不全合并1型糖尿病一例[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 518-520.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?