[1] |
Hundal R, Shaffer EA. Gallbladder cancer: epidemiology and outcome[J]. Clin Epidemiol, 2014(6):99-109.
|
[2] |
Droege M, Hill B. The Genome Sequencer FLX™ System-longer reads, more applications, straight forward bioinformatics and more complete data sets[J]. J Biotechnol, 2008, 136(1):3-10.
|
[3] |
Imelfort M, Duran C, Batley J, et al. Discovering genetic polymorphisms in next-generation sequencing data[J]. Plant Biotechnol J, 2009, 7(4):312-317.
|
[4] |
Mardis ER. The impact of next-generation sequencing technology on genetics[J]. Trends Genet, 2008, 24(3):133-141.
|
[5] |
Choi M, Scholl UI, Ji W, et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing[J]. Proc Natl Acad Sci U S A, 2009, 106(45):19096-19101.
|
[6] |
Mertes F, Elsharawy A, Sauer S, et al. Targeted enrichment of genomic DNA regions for next-generation sequencing[J]. Brief Funct Genomics, 2011, 10(6):374-386.
|
[7] |
Kelley RK, Gordan JD, Evason K, et al. Next-generation sequencing (NGS) in an advanced hepatocellular carcinoma (HCC) cohort: analyses of TP53 and CTNNB1[J]. J Clin Oncol, 2016, 34(4 suppl):286.
|
[8] |
Holcombe RF, Xiu J, Pishvaian MJ, et al. Tumor profiling of biliary tract carcinomas to reveal distinct molecular alterations and potential therapeutic targets[J]. J Clin Oncol, 2015, 33(3 suppl):285.
|
[9] |
Allotey LK, Chaiteerakij R, Dhanasekaran R, et al. Sa1716 next generation sequencing and pathway analysis reveals frequent activation of the PI3-K/Akt pathway in gallbladder cancer: potential for targeted therapy[J]. Gastroenterology, 2015, 148(4):S1019.
|
[10] |
Simbolo M, Fassan M, Ruzzenente A, et al. Multigene mutational profiling of cholangiocarcinomas identifies actionable molecular subgroups[J]. Oncotarget, 2014, 5(9):2839-2852.
|
[11] |
Li M, Zhang Z, Li X, et al. Whole-exome and targeted gene sequencing of gallbladder carcinoma identifies recurrent mutations in the ErbB pathway[J]. Nat Genet, 2014, 46(8):872-876.
|
[12] |
Jiao Y, Pawlik TM, Anders RA, et al. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas[J]. Nat Genet, 2013, 45(12):1470-1473.
|
[13] |
Marks EI, Yee NS. Molecular genetics and targeted therapeutics in biliary tract carcinoma[J]. World J Gastroenterol, 2016, 22(4):1335-1347.
|
[14] |
Javle M, Bekaii-Saab T, Jain A, et al. Biliary cancer: utility of next-generation sequencing for clinical management[J]. Cancer, 2016, 122(24):3838-3847.
|
[15] |
Sicklick JK, Fanta PT, Shimabukuro K, et al. Genomics of gallbladder cancer: the case for biomarker-driven clinical trial design[J]. Cancer Metastasis Rev, 2016, 35(2):263-275.
|
[16] |
McCubrey JA, Steelman LS, Chappell WH, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance[J]. Biochim Biophys Acta, 2007, 1773(8):1263-1284.
|
[17] |
Hanada K, Tsuchida A, Iwao T, et al. Gene mutations of K-ras in gallbladder mucosae and gallbladder carcinoma with an anomalous junction of the pancreaticobiliary duct[J]. Am J Gastroenterol, 1999, 94(6):1638-1642.
|
[18] |
Huang WC, Tsai CC, Chan CC. Mutation analysis and copy number changes of KRAS and BRAF genes in Taiwanese cases of biliary tract cholangiocarcinoma[J]. J Formos Med Assoc, 2017, 116(6):464-468.
|
[19] |
Javle M, Rashid A, Churi C, et al. Molecular characterization of gallbladder cancer using somatic mutation profiling[J]. Hum Pathol, 2014, 45(4):701-708.
|
[20] |
Li M, Chen L, Qu Y, et al. Identification of MAP kinase pathways as therapeutic targets in gallbladder carcinoma using targeted parallel sequencing[J]. Oncotarget, 2017, 8(22):36319-36330.
|
[21] |
Samuels Y, Wang Z, Bardelli A, et al. High frequency of mutations of the PIK3CA gene in human cancers[J]. Science, 2004, 304(5670):554.
|
[22] |
Buzzoni R, Pusceddu S, Bajetta E, et al. Activity and safety of RAD001 (everolimus) in patients affected by biliary tract cancer progressing after prior chemotherapy: a phase II ITMO study[J]. Ann Oncol, 2014, 25(8):1597-1603.
|
[23] |
Boku N. HER2-positive gastric cancer[J]. Gastric Cancer, 2014, 17(1):1-12.
|
[24] |
Roa I, de Toro G, Schalper K, et al. Overexpression of the HER2/neu gene: a new therapeutic possibility for patients with advanced gallbladder cancer[J]. Gastrointest Cancer Res, 2014, 7(2):42-48.
|
[25] |
Kumari N, Kapoor VK, Krishnani N, et al. Role of C-erbB2 expression in gallbladder cancer[J]. Indian J Pathol Microbiol, 2012, 55(1):75-79.
|
[26] |
Javle M, Churi C, Kang HC, et al. HER2/neu-directed therapy for biliary tract cancer[J]. J Hematol Oncol, 2015(8):58.
|
[27] |
Keenen B, Qi H, Saladi SV, et al. Heterogeneous SWI/SNF chromatin remodeling complexes promote expression of microphthalmia-associated transcription factor target genes in melanoma[J]. Oncogene, 2010, 29(1):81-92.
|
[28] |
Jones S, Wang TL, Shih IeM, et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma[J]. Science, 2010, 330(6001):228-231.
|
[29] |
Gui Y, Guo G, Huang Y, et al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder[J]. Nat Genet, 2011, 43(9):875-878.
|
[30] |
Zang ZJ, Cutcutache I, Poon SL, et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes[J]. Nat Genet, 2012, 44(5):570-574.
|