切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2018, Vol. 07 ›› Issue (04) : 341 -344. doi: 10.3877/cma.j.issn.2095-3232.2018.04.020

所属专题: 文献

综述

下一代基因测序技术在胆囊癌基因组研究中的应用进展
张瑞1, 王林1, 耿智敏1,()   
  1. 1. 710061 西安交通大学第一附属医院肝胆外科
  • 收稿日期:2018-05-07 出版日期:2018-08-10
  • 通信作者: 耿智敏
  • 基金资助:
    国家自然科学基金(81572420)

Progress of next-generation sequencing in genome research of gallbladder carcinoma

Rui Zhang1, Lin Wang1, Zhimin Geng1()   

  • Received:2018-05-07 Published:2018-08-10
  • Corresponding author: Zhimin Geng
引用本文:

张瑞, 王林, 耿智敏. 下一代基因测序技术在胆囊癌基因组研究中的应用进展[J]. 中华肝脏外科手术学电子杂志, 2018, 07(04): 341-344.

Rui Zhang, Lin Wang, Zhimin Geng. Progress of next-generation sequencing in genome research of gallbladder carcinoma[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2018, 07(04): 341-344.

[1]
Hundal R, Shaffer EA. Gallbladder cancer: epidemiology and outcome[J]. Clin Epidemiol, 2014(6):99-109.
[2]
Droege M, Hill B. The Genome Sequencer FLX System-longer reads, more applications, straight forward bioinformatics and more complete data sets[J]. J Biotechnol, 2008, 136(1):3-10.
[3]
Imelfort M, Duran C, Batley J, et al. Discovering genetic polymorphisms in next-generation sequencing data[J]. Plant Biotechnol J, 2009, 7(4):312-317.
[4]
Mardis ER. The impact of next-generation sequencing technology on genetics[J]. Trends Genet, 2008, 24(3):133-141.
[5]
Choi M, Scholl UI, Ji W, et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing[J]. Proc Natl Acad Sci U S A, 2009, 106(45):19096-19101.
[6]
Mertes F, Elsharawy A, Sauer S, et al. Targeted enrichment of genomic DNA regions for next-generation sequencing[J]. Brief Funct Genomics, 2011, 10(6):374-386.
[7]
Kelley RK, Gordan JD, Evason K, et al. Next-generation sequencing (NGS) in an advanced hepatocellular carcinoma (HCC) cohort: analyses of TP53 and CTNNB1[J]. J Clin Oncol, 2016, 34(4 suppl):286.
[8]
Holcombe RF, Xiu J, Pishvaian MJ, et al. Tumor profiling of biliary tract carcinomas to reveal distinct molecular alterations and potential therapeutic targets[J]. J Clin Oncol, 2015, 33(3 suppl):285.
[9]
Allotey LK, Chaiteerakij R, Dhanasekaran R, et al. Sa1716 next generation sequencing and pathway analysis reveals frequent activation of the PI3-K/Akt pathway in gallbladder cancer: potential for targeted therapy[J]. Gastroenterology, 2015, 148(4):S1019.
[10]
Simbolo M, Fassan M, Ruzzenente A, et al. Multigene mutational profiling of cholangiocarcinomas identifies actionable molecular subgroups[J]. Oncotarget, 2014, 5(9):2839-2852.
[11]
Li M, Zhang Z, Li X, et al. Whole-exome and targeted gene sequencing of gallbladder carcinoma identifies recurrent mutations in the ErbB pathway[J]. Nat Genet, 2014, 46(8):872-876.
[12]
Jiao Y, Pawlik TM, Anders RA, et al. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas[J]. Nat Genet, 2013, 45(12):1470-1473.
[13]
Marks EI, Yee NS. Molecular genetics and targeted therapeutics in biliary tract carcinoma[J]. World J Gastroenterol, 2016, 22(4):1335-1347.
[14]
Javle M, Bekaii-Saab T, Jain A, et al. Biliary cancer: utility of next-generation sequencing for clinical management[J]. Cancer, 2016, 122(24):3838-3847.
[15]
Sicklick JK, Fanta PT, Shimabukuro K, et al. Genomics of gallbladder cancer: the case for biomarker-driven clinical trial design[J]. Cancer Metastasis Rev, 2016, 35(2):263-275.
[16]
McCubrey JA, Steelman LS, Chappell WH, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance[J]. Biochim Biophys Acta, 2007, 1773(8):1263-1284.
[17]
Hanada K, Tsuchida A, Iwao T, et al. Gene mutations of K-ras in gallbladder mucosae and gallbladder carcinoma with an anomalous junction of the pancreaticobiliary duct[J]. Am J Gastroenterol, 1999, 94(6):1638-1642.
[18]
Huang WC, Tsai CC, Chan CC. Mutation analysis and copy number changes of KRAS and BRAF genes in Taiwanese cases of biliary tract cholangiocarcinoma[J]. J Formos Med Assoc, 2017, 116(6):464-468.
[19]
Javle M, Rashid A, Churi C, et al. Molecular characterization of gallbladder cancer using somatic mutation profiling[J]. Hum Pathol, 2014, 45(4):701-708.
[20]
Li M, Chen L, Qu Y, et al. Identification of MAP kinase pathways as therapeutic targets in gallbladder carcinoma using targeted parallel sequencing[J]. Oncotarget, 2017, 8(22):36319-36330.
[21]
Samuels Y, Wang Z, Bardelli A, et al. High frequency of mutations of the PIK3CA gene in human cancers[J]. Science, 2004, 304(5670):554.
[22]
Buzzoni R, Pusceddu S, Bajetta E, et al. Activity and safety of RAD001 (everolimus) in patients affected by biliary tract cancer progressing after prior chemotherapy: a phase II ITMO study[J]. Ann Oncol, 2014, 25(8):1597-1603.
[23]
Boku N. HER2-positive gastric cancer[J]. Gastric Cancer, 2014, 17(1):1-12.
[24]
Roa I, de Toro G, Schalper K, et al. Overexpression of the HER2/neu gene: a new therapeutic possibility for patients with advanced gallbladder cancer[J]. Gastrointest Cancer Res, 2014, 7(2):42-48.
[25]
Kumari N, Kapoor VK, Krishnani N, et al. Role of C-erbB2 expression in gallbladder cancer[J]. Indian J Pathol Microbiol, 2012, 55(1):75-79.
[26]
Javle M, Churi C, Kang HC, et al. HER2/neu-directed therapy for biliary tract cancer[J]. J Hematol Oncol, 2015(8):58.
[27]
Keenen B, Qi H, Saladi SV, et al. Heterogeneous SWI/SNF chromatin remodeling complexes promote expression of microphthalmia-associated transcription factor target genes in melanoma[J]. Oncogene, 2010, 29(1):81-92.
[28]
Jones S, Wang TL, Shih IeM, et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma[J]. Science, 2010, 330(6001):228-231.
[29]
Gui Y, Guo G, Huang Y, et al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder[J]. Nat Genet, 2011, 43(9):875-878.
[30]
Zang ZJ, Cutcutache I, Poon SL, et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes[J]. Nat Genet, 2012, 44(5):570-574.
[1] 林昌盛, 战军, 肖雪. 上皮性卵巢癌患者诊疗中基因检测及分子靶向药物治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 505-510.
[2] 罗丹, 孔为民, 陈姝宁, 赵小玲, 谢云凯. 子宫内膜异位症患者在位及异位内膜上皮细胞-间充质转化相关生物标志物的变化[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 530-539.
[3] 陈甜甜, 王晓东, 余海燕. 双胎妊娠合并Gitelman综合征孕妇的妊娠结局及文献复习[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 559-568.
[4] 李维, 莫俊俏. 儿童呼吸道耐药流感嗜血杆菌基因型鉴定及耐药分析对抗菌药物治疗选择的意义[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 315-323.
[5] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[6] 黄威, 刘启, 陈流华, 滕茶香, 区喆建, 刘韩笑, 陈健聪, 张昆松. 新定义的可预测肝癌预后的焦亡相关lncRNA模型[J]. 中华普通外科学文献(电子版), 2023, 17(05): 357-365.
[7] 闫甲, 刘双池, 王政宇. 胆囊癌肿瘤标志物的研究和应用进展[J]. 中华普通外科学文献(电子版), 2023, 17(05): 391-394.
[8] 袁育韬, 邢金琳, 谢克飞, 殷凯. CT征象及BRAFV600E基因突变与甲状腺乳头状癌中央区淋巴结转移的相关性[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 611-614.
[9] 樊丽超, 郭瑾瑛, 陈鑫. 野生型RET与RET/PTC融合基因检测对甲状腺乳头状癌中央区淋巴结清扫的指导意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 631-635.
[10] 彭雨诗, 苗芸, 严紫嫣. 宏基因组高通量测序诊断肾移植术后华支睾吸虫感染一例[J]. 中华移植杂志(电子版), 2023, 17(05): 297-299.
[11] 刘恒, 侯宇川. 膀胱癌新型灌注药物的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 445-451.
[12] 许丁伟, 马江云, 李新成, 黄洁. Alagille综合征疑诊为先天性胆道闭锁一例并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 681-687.
[13] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[14] 王飞飞, 王光林, 孟泽松, 李保坤, 曹龙飞, 张娟, 周超熙, 丁源一, 王贵英. 敲低IMPDH1对结肠癌SW480、HT29细胞生物功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(08): 884-890.
[15] 高红琴, 陈晨, 陆瑞科, 王小雨, 张敏, 李少华, 郝梨岚, 黄新程, 关凌耀, 张韵红. 外阴阴道假丝酵母菌病对女性阴道-宫颈菌群的影响研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 720-725.
阅读次数
全文


摘要