切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2023, Vol. 12 ›› Issue (05) : 551 -556. doi: 10.3877/cma.j.issn.2095-3232.2023.05.015

所属专题: 临床研究

临床研究

人工智能辅助压缩感知技术在上腹部T2WI压脂序列中的应用
雷漫诗, 邓锶锶, 汪昕蓉, 黄锦彬, 向青, 熊安妮, 孟占鳌()   
  1. 510520 广州新华学院
    510630 广州,中山大学附属第三医院放射科
    510730 广州,拜耳医药保健有限公司
    510450 广州卫生职业技术学院
  • 收稿日期:2023-06-08 出版日期:2023-10-10
  • 通信作者: 孟占鳌
  • 基金资助:
    广州市科技计划项目(202007030007)

Application of artificial intelligence-assisted compression sensing technology in upper abdominal fat-suppressed T2WI sequence

Manshi Lei, Sisi Deng, Xinrong Wang, Jinbin Huang, Qing Xiang, Anni Xiong, Zhan'ao Meng()   

  1. Guangzhou Xinhua University, Guangzhou 510520, China
    Department of Radiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
    Bayer Healthcare Co., Ltd., Guangzhou 510730, China
    Guangzhou Health Science College, Guangzhou 510450, China
  • Received:2023-06-08 Published:2023-10-10
  • Corresponding author: Zhan'ao Meng
引用本文:

雷漫诗, 邓锶锶, 汪昕蓉, 黄锦彬, 向青, 熊安妮, 孟占鳌. 人工智能辅助压缩感知技术在上腹部T2WI压脂序列中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 551-556.

Manshi Lei, Sisi Deng, Xinrong Wang, Jinbin Huang, Qing Xiang, Anni Xiong, Zhan'ao Meng. Application of artificial intelligence-assisted compression sensing technology in upper abdominal fat-suppressed T2WI sequence[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2023, 12(05): 551-556.

目的

探讨人工智能辅助压缩感知(Acs)技术在上腹部T2WI压脂序列中的应用。

方法

本研究对象为2022年6月至2022年10月在中山大学附属第三医院行上腹部MRI检查的30例患者。患者均签署知情同意书,符合医学伦理学规定。其中男21例,女9例;年龄31~76岁,中位年龄55岁。所有患者均分别采用常规并行采集(PI)方案和Acs方案进行磁共振扫描,PI组采用轴位、门控触发、频率选择饱和技术(AX-T2WI-FS-RT),Acs组采用Acs技术(AX-T2WI-FS-BH-Acs)。客观评价指标包括图像信噪比(SNR)、对比噪声比(CNR)、扫描时间等。两组比较采用配对t检验。两组图像质量评分和病灶检出数量比较采用Wilcoxon检验。2名医师的图像质量评分一致性评估采用Kappa检验。

结果

Acs组图像SNR平均为24.3±8.2,明显高于PI组11.7±4.4(t=13.00,P<0.05)。Acs组图像CNR为4.2±2.3,亦明显高于PI组的2.2±1.3(t=9.20,P<0.05)。Acs组扫描时间为66 s,明显短于PI组的156 s。Acs组图像质量评分中位数为4.4(4.3,4.6)分,明显高于PI组的4.1(3.4,4.4)分(Z=3.98,P<0.05)。对于呼吸紊乱患者,Acs组图像质量评分为4.6(4.3,4.7)分,亦明显高于PI组的3.4(3.1,3.4)分(Z=3.80,P<0.05)。两组病灶检出数量分别为1(0,3)、1(0,2)个,差异无统计学意义(Z=0.50,P>0.05)。2名医师的图像质量评分一致性强(κ=0.96)。

结论

与上腹部PI组AX-T2WI-FS-RT序列相比,Acs技术的T2WI-FS-BH-Acs序列可在不降低病灶检出率的前提下,明显缩短扫描时间,提高图像质量,尤其可极大提高呼吸紊乱患者检查图像质量。

Objective

To investigate the application of artificial intelligence-assisted compressed sensing (Acs) technology in the upper abdominal fat-suppressed T2-weighted imaging (T2WI) sequence.

Methods

30 patients underwent MRI examination of the upper abdomen in the Third Affiliated Hospital of Sun Yat-sen University from June 2022 to October 2022 were recruited in this study. The informed consents of all patients were obtained and the local ethical committee approval was received. Among them, 21 patients were male and 9 female, aged 31-76 years with a median age of 55 years. All patients received MRI by conventional parallel imaging (PI) and Acs sequences, respectively. Axial position, gating and triggering, and frequency-selective saturation techniques (AX-T2WI-FS-RT) were adopted in the PI group, and Acs technique (AX-T2WI-FS-BH-Acs) was employed in the Acs group. Objective assessment indexes included image signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and scanning time, etc. Comparison between two groups was performed by paired t test. The image quality score and the number of detected lesions between two groups were compared by Wilcoxon test. The consistency in the image quality scores between two physicians was evaluated by Kappa test.

Results

The average SNR in the Acs group was 24.3±8.2, significantly higher than 11.7±4.4 in the PI group (t=13.00, P<0.05). The CNR in the Acs group was 4.2±2.3, significantly higher than 2.2±1.3 in the PI group (t=9.20, P<0.05). The scanning time in the Acs group was66 s, significantly shorter than 156 s in the PI group. The median image quality score in the Acs group was 4.4(4.3, 4.6), significantly higher than 4.1(3.4, 4.4) in the PI group (Z=3.98, P<0.05). For patients with respiratory disorders in the Acs group, the image quality score was 4.6(4.3, 4.7), significantly higher than 3.4(3.1, 3.4) in the PI group (Z=3.80, P<0.05). The number of detected lesions in two groups was 1(0, 3) and 1(0, 2), and no significant difference was observed (Z=0.50, P>0.05). The consistency in the image quality score was high between two physicians (κ=0.96).

Conclusions

Compared with the AX-T2WI-FS-RT sequence of the upper abdomen in the PI group, Acs technique using T2WI-FS-BH-Acs sequence can significantly shorten the scanning time and improve the image quality, especially for patients with respiratory disorders, without sacrificing the detection rate of lesions.

表1 Acs组和PI组患者MRI扫描参数
图1 肝病患者两种上腹部MRI扫描方法图像质量对比图注:a为采用PI技术图像,b为采用Acs技术图像,与采用PI技术相比,Acs技术在图像噪声、伪影和整体质量方面有优势,图中肝左叶心脏搏动伪影有明显改善;c示两种技术均能显示病变(箭头所示),但PI组图像(右边图)的病变边缘清晰度差;Acs为人工智能辅助压缩感知,PI为并行采集技术
表2 两种MRI扫描方法的图像质量主观评分比较(分)
表3 十例呼吸紊乱肝病患者两种上腹部MRI扫描方法的图像质量主观评分比较(分)
[1]
Yoon JH, Nickel MD, Peeters JM,et al. Rapid imaging: recent advances in abdominal MRI for reducing acquisition time and its clinical applications[J]. Korean J Radiol, 2019, 20(12):1597-1615.
[2]
Attenberger UI, Biber S, Wichtmann BD. Technological advances of magnetic resonance imaging in today's health care environment[J]. Invest Radiol, 2020, 55(9):531-542.
[3]
Gatos I, Tsantis S, Karamesini M, et al. Focal liver lesions segmentation and classification in nonenhanced T2-weighted MRI[J]. Med Phys, 2017, 44(7):3695-3705.
[4]
Schreiber-Zinaman J, Rosenkrantz AB. Frequency and reasons for extra sequences in clinical abdominal MRI examinations[J]. Abdom Radiol, 2017, 42(1):306-311.
[5]
Ye JC. Compressed sensing MRI: a review from signal processing perspective[J]. BMC Biomed Eng, 2019(1):8.
[6]
Kozak BM, Jaimes C, Kirsch J, et al. MRI techniques to decrease imaging times in children[J]. Radiographics, 2020, 40(2):485-502.
[7]
Li G, Hennig J, Raithel E, et al. An L1-norm phase constraint for half-fourier compressed sensing in 3D MR imaging[J]. MAGMA, 2015, 28(5):459-472.
[8]
Ghodrati V, Shao J, Bydder M, et al. MR image reconstruction using deep learning: evaluation of network structure and loss functions[J]. Quant Imaging Med Surg, 2019, 9(9):1516-1527.
[9]
Sheng RF, Zheng LY, Jin KP, et al. Single-breath-hold T2WI liver MRI with deep learning-based reconstruction: a clinical feasibility study in comparison to conventional multi-breath-hold T2WI liver MRI[J]. Magn Reson Imaging, 2021(81):75-81.
[10]
Xiang L, Chen Y, Chang W, et al. Ultra-fast T2-weighted MR reconstruction using complementary T1-weighted information[J]. Med Image Comput Comput Assist Interv, 2018(11070):215-223.
[11]
Zhao YJ, Peng CD, Wang SF, et al. The feasibility investigation of AI-assisted compressed sensing in kidney MR imaging: an ultra-fast T2WI imaging technology[J]. BMC Med Imaging, 2022, 22(1):119.
[12]
Shanbhogue K, Tong A, Smereka P, et al. Accelerated single-shot T2-weighted fat-suppressed (FS) MRI of the liver with deep learning-based image reconstruction: qualitative and quantitative comparison of image quality with conventional T2-weighted FS sequence[J]. Eur Radiol, 2021, 31(11):8447-8457.
[13]
Visvikis D, Cheze Le Rest C, Jaouen V, et al. Artificial intelligence, machine (deep) learning and radio(geno)mics: definitions and nuclear medicine imaging applications[J]. Eur J Nucl Med Mol Imaging, 2019, 46(13):2630-2637.
[14]
Wang SS, Cao GH, Wang Y, et al. Review and prospect: artificial intelligence in advanced medical imaging[J]. Front Radiol, 2021(1):781868.
[15]
Li H, Hu C, Yang Y, et al. Single-breath-hold T2WI MRI with artificial intelligence-assisted technique in liver imaging: as compared with conventional respiratory-triggered T2WI[J]. Magn Reson Imaging, 2022(93):175-180.
[16]
Ilesanmi AE, Ilesanmi TO. Methods for image denoising using convolutional neural network: a review[J]. Complex Intell Syst, 2021(7):2179-2198.
[17]
孟占鳌, 张悦, 蒋伟, 等. DLIR算法结合前置ASIR-V技术在过重患者门静脉成像中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2022, 11(4):373-379.
[18]
Kidoh M, Shinoda K, Kitajima M, et al. Deep learning based noise reduction for brain MR imaging: tests on phantoms and healthy volunteers[J]. Magn Reson Med Sci, 2020, 19(3):195-206.
[19]
Matos AP, Velloni F, Ramalho M, et al. Focal liver lesions: practical magnetic resonance imaging approach[J]. World J Hepatol, 2015, 7(16):1987-2008.
[20]
马媛媛, 李彦, 张雪坤, 等. 基于T1W-3D序列探讨光梭成像技术的临床应用价值[J].磁共振成像, 2021, 12(11):52-56.
[21]
Johnson PM, Recht MP, Knoll F. Improving the speed of MRI with artificial intelligence[J]. Semin Musculoskelet Radiol, 2020, 24(1):12-20.
[1] 项文静, 徐燕, 茹彤, 郑明明, 顾燕, 戴晨燕, 朱湘玉, 严陈晨. 神经学超声检查在产前诊断胼胝体异常中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 470-476.
[2] 谢峰, 伍玉晗, 赵胜, 杨小红, 王玉波, 石珍, 范建华, 章敏. 产前超声和MRI诊断胎儿硬脑膜窦畸形的联合应用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(03): 275-280.
[3] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[4] 庄若语, 杭明辉, 李文华, 张霆, 侯炜. 膝骨关节炎半定量磁共振评分研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 545-552.
[5] 吴少敏, 张世豪, 刘炳光, 李婵, 尹嘉敏, 郑昌业, 黄素然. 胎儿巨大蛛网膜囊肿并文献复习[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(04): 390-397.
[6] 王莉, 曹蕾, 王亚丹, 张伟. Krabbe病1例临床分析并文献复习[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 339-345.
[7] 陈海香, 王元银, 蒋盼. 冠突过长患者的临床表现及磁共振影像学分析[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 169-174.
[8] 谢丽春, 欧庆芬, 张秋萍, 叶升. 简化和标准肝脏MRI方案在结直肠癌肝转移患者随访中的临床应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(04): 434-437.
[9] 阮星星, 黄智渊, 刘芙香, 狄金明. 从临床医师诊治患者的思路出发撰写临床研究论文[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 397-401.
[10] 黄海, 程必盛, 黄健. 2024年欧洲泌尿外科学会年会:前列腺癌研究的前沿探索与未来趋势[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 202-207.
[11] 刘明辉, 葛方明. MRI 对腹股沟疝修补术后患者早期并发症的评估价值研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 579-583.
[12] 臧书芹, 陈巧玲, 江思源, 朱晓明, 沈浮, 王颢, 张卫, 邵成伟. 基于直肠高分辨MRI的直肠侧系膜分析及其临床价值的研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 312-320.
[13] 张立俊, 孙存杰, 胡春峰, 孟冲, 张辉. MSCT、DCE-MRI 评估术前胃癌TNM 分期的准确性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 519-523.
[14] 姜超, 夏旭东, 王功夏, 何向宇, 王海彬, 李媛. 磁共振DWI及其ADC对乳腺导管原位癌伴微浸润腋窝淋巴结转移的诊断价值[J/OL]. 中华介入放射学电子杂志, 2024, 12(03): 234-243.
[15] 金安松, 邹玉松, 刘玖涛, 薛凤麟, 庞爱兰. 孤立性颅内浆细胞瘤一例及相关文献复习[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 495-500.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?