切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2023, Vol. 12 ›› Issue (06) : 694 -701. doi: 10.3877/cma.j.issn.2095-3232.2023.06.019

基础研究

基于生物信息学分析IPO7在肝癌中的表达及意义
张维志, 刘连新()   
  1. 150001 哈尔滨医科大学附属第一医院肝脏外科
  • 收稿日期:2023-09-07 出版日期:2023-12-10
  • 通信作者: 刘连新

Expression and significance of IPO7 in hepatocellular carcinoma based on bioinformatics analysis

Weizhi Zhang, Lianxin Liu()   

  1. Department of Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
  • Received:2023-09-07 Published:2023-12-10
  • Corresponding author: Lianxin Liu
引用本文:

张维志, 刘连新. 基于生物信息学分析IPO7在肝癌中的表达及意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 694-701.

Weizhi Zhang, Lianxin Liu. Expression and significance of IPO7 in hepatocellular carcinoma based on bioinformatics analysis[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2023, 12(06): 694-701.

目的

基于生物信息学分析探讨输入蛋白7(IPO7)在肝细胞癌(肝癌)中的表达及临床意义。

方法

利用TIMER 2.0、UALCAN及CPTAC数据库分析IPO7在肝癌中的表达情况,并从GEO数据库下载多个基因芯片进一步验证。基于GEPIA2、UALCAN数据库分析IPO7表达与肝癌患者临床病理特征的相关性,并利用TCGA肝癌数据进行二元Logistic回归,进一步分析并验证IPO7表达与肝癌患者临床病理特征的相关性。基于GEPIA2、Kaplan-Meier Plotter数据库分析IPO7表达对肝癌患者预后的影响,通过Cox回归模型进一步评估IPO7的预后价值,并进一步构建列线图评估肝癌的预后。基于LinkedOmics数据库,分析IPO7在肝癌中的共表达基因,进行GO功能及KEGG通路富集分析预测其生物学功能。通过STRING数据库进一步构建蛋白质-蛋白质相互作用(PPI)网络。基于TIMER 2.0数据库,分析IPO7表达与肝癌组织免疫浸润水平的关系。两组IPO7表达比较采用t检验或秩和检验,临床分期与IPO7表达关系分析采用单因素方差分析,生存分析采用Kaplan-Meier法及Log-rank检验,采用Cox比例风险回归模型分析IPO7对预后的预测价值。

结果

UALCAN数据库分析显示,肝癌组织中IPO7 mRNA表达水平中位数为16.9(10.7,23.7),明显高于正常肝组织的11.9(10.3,14.1) (P<0.05)。GEO数据下载多个基因芯片进一步验证,肝癌组织IPO7 mRNA相对表达量明显高于正常肝组织。CPTAC数据库进一步验证,肝癌中IPO7蛋白表达量为0(-0.778,0.654),亦明显高于正常肝组织的-1.582(-2.367,-0.559) (P<0.05)。GEPIA2数据库显示,随着肝癌分期增高,IPO7表达量逐渐升高(F=4.83,P<0.05)。UALCAN数据库显示IPO7 mRNA表达与肝癌患者美国癌症联合委员会(AJCC)临床分期、组织学分级及TP53突变有关(P<0.05)。GEPIA2数据库分析显示,IPO7高表达组总体生存期(OS)及无病生存期(DFS)更短(HR=1.700,1.400;P<0.05);多因素Cox分析显示,IPO7基因表达是肝癌患者预后不良的独立危险因素(HR=1.675,P<0.05)。KEGG通路富集分析和STRING蛋白相互作用网络分析显示,IPO7蛋白主要参与蛋白质核输入、细胞周期调控、转录调节、有丝分裂纺锤体调节和有丝分裂过程的协调、rRNA加工等活动。TIMER 2.0数据库分析显示,IPO7的表达与CD8+T细胞、CD4+T细胞、B细胞、巨噬细胞、中性粒细胞、树突状细胞浸润水平呈正相关(r=0.191,0.364,0.270,0.450,0.485,0.310;P<0.05)。

结论

IPO7可作为肝癌预后不良标志物和潜在治疗靶点,其可能通过调节核质转运影响细胞周期及免疫细胞浸润相关通路调控肝癌的发生与发展。

Objective

To investigate the expression and clinical significance of importin 7 (IPO7) in hepatocellular carcinoma (HCC) based on bioinformatics analysis.

Methods

The expression level of IPO7 in HCC was analyzed by TIMER 2.0, UALCAN and CPTAC databases, and multiple gene chips were downloaded from GEO database for further verification. The correlation between IPO7 expression and clinicopathological characteristics of HCC patients was analyzed based on GEPIA2 and UALCAN databases. Binary Logistic regression was conducted using TCGA HCC data to further analyze and validate the correlation between IPO7 expression and clinicopathological characteristics of HCC patients. Based on GEPIA2 and Kaplan-Meier Plotter databases, the effect of IPO7 expression on clinical prognosis of HCC patients was analyzed. Prognostic value of IPO7 was further evaluated by Cox regression model and nomogram was constructed to evaluate clinical prognosis of HCC. Based on LinkedOmics database, the co-expression genes of IPO7 in HCC were analyzed. GO function and KEGG pathway enrichment analyses were performed to predict biological function. Protein-protein interaction (PPI) network was further constructed through STRING database. Based on TIMER 2.0 database, the relationship between IPO7 expression and immune infiltration level of HCC was analyzed. The expression level of IPO7 between two groups was compared by t test orrank-sum test. The relationship between clinical staging and IPO7 expression was assessed by One Way ANOVA. Survival analysis was conducted by Kaplan-Meier method and Log-rank test. The prognostic value of IPO7 was determined by Cox proportional hazard regression model.

Results

UALCAN database analysis showed that the median expression level of IPO7 mRNA in HCC tissues was 16.9(10.7, 23.7), significantly higher than 11.9(10.3, 14.1) in normal liver tissues (P<0.05). Multiple gene chips downloaded from GEO database further validated that relative expression level of IPO7 mRNA in HCC tissues was significantly higher compared with that in normal liver tissues. CPTAC database further verified that the expression of IPO7 protein was 0(-0.778, 0.654) in HCC, significantly higher than -1.582(-2.367, -0.559) in normal liver tissues (P<0.05). GEPIA2 database showed that the expression level of IPO7 was gradually up-regulated with the increase of stages of HCC (F=4.83, P<0.05). UALCAN database indicated that the expression of IPO7 mRNA was correlated with AJCC clinical staging, histological grading and TP53 mutation (P<0.05). GEPIA2 database analysis revealed that the overall survival (OS) and disease-free survival (DFS) were shorter in the high IPO7 expression group (HR=1.700, 1.400; P<0.05). Multivariate Cox analysis showed that the expression of IPO7 mRNA was an independent risk factor for poor prognosis in HCC patients (HR=1.675, P<0.05). KEGG pathway enrichment and protein-protein interaction (PPI) network analyses with STRING database indicated that IPO7 protein mainly participated in the transfer of protein to the nucleus, cell cycle regulation, transcription regulation, mitotic spindle regulation, coordination of mitosis and rRNA processing, etc.TIMER 2.0 database analysis showed that the expression level of IPO7 was positively correlated with the infiltration levels of CD8+ T cells, CD4+ T cells, B cells, macrophages, neutrophils and dendritic cells (r=0.191, 0.364, 0.270, 0.450, 0.485, 0.310; P<0.05).

Conclusions

IPO7 can be used as a biomarker for poor prognosis and potential therapeutic target for HCC, which regulates the incidence and development of HCC probably by regulating nucleo-cytoplasmic transport, affecting cell cycle and immune cell infiltration-related signaling pathways.

图1 IPO7在肝癌中的表达情况注:IPO7为输入蛋白7,*为P<0.05,**为P<0.01,***为P<0.001
表1 IPO7表达与肝癌患者临床病理特征的Logistic回归分析
图2 IPO7对肝癌患者预后的预测模型及其校准图注:a为预测模型列线图,b为校准图;IPO7为输入蛋白7
图3 基于实验证据的IPO7蛋白相互作用网络注:IPO7为输入蛋白7
图4 肝癌中IPO7表达与免疫细胞浸润的关系注:IPO7为输入蛋白7
[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249.
[2]
Zeng H, Chen W, Zheng R, et al. Changing cancer survival in China during 2003-15: a pooled analysis of 17 population-based cancer registries[J]. Lancet Glob Health, 2018, 6(5):e555-567.
[3]
Zaitseva L, Cherepanov P, Leyens L, et al. HIV-1 exploits importin 7 to maximize nuclear import of its DNA genome[J]. Retrovirology, 2009(6):11.
[4]
郭建林, 徐存拴. Importin的结构与功能研究进展[J]. 中国细胞生物学学报, 2015, 37(7):1013-1020.
[5]
夏阳, 武斌, 张毅, 等. 核定位信号及其在病毒感染机制中的研究进展[J]. 微生物学通报, 2021, 48(3):896-905.
[6]
Golomb L, Bublik DR, Wilder S, et al. Importin 7 and exportin 1 link c-Myc and p53 to regulation of ribosomal biogenesis[J]. Mol Cell, 2012, 45(2):222-232.
[7]
Li M, Xu D, Zhan Y, et al. IPO7 promotes pancreatic cancer progression via regulating ERBB pathway[J]. Clinics, 2022, 77:100044.
[8]
Xu J, Xu W, Xuan Y, et al. Pancreatic cancer progression is regulated by IPO7/p53/LncRNA MALAT1/MiR-129-5p positive feedback loop[J]. Front Cell Dev Biol, 2021(9):630262.
[9]
Chen J, Hu Y, Teng Y, et al. Increased nuclear transporter importin 7 contributes to the tumor growth and correlates with CD8 T cell infiltration in cervical cancer[J]. Front Cell Dev Biol, 2021(9):732786.
[10]
Lee AY, Kim S, Lee S, et al. Knockdown of importin 7 inhibits lung tumorigenesis in K-rasLA1 lung cancer mice[J]. Anticancer Res, 2017, 37(5):2381-2386.
[11]
Xue J, Zhou A, Tan C, et al. Forkhead box M1 is essential for nuclear localization of glioma-associated oncogene homolog 1 in glioblastoma multiforme cells by promoting importin-7 expression[J]. J Biol Chem, 2015, 290(30):18662-18670.
[12]
Li T, Fu J, Zeng Z, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells[J]. Nucleic Acids Res, 2020, 48(W1):W509-514.
[13]
Chandrashekar DS, Bashel B, Balasubramanya SAH, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses[J]. Neoplasia, 2017, 19(8):649-658.
[14]
Edwards NJ, Oberti M, Thangudu RR, et al. The CPTAC data portal: a resource for cancer proteomics research[J]. J Proteome Res, 2015, 14(6):2707-2713.
[15]
Dudley WN, Wickham R, Coombs N. An introduction to survival statistics: Kaplan-Meier analysis[J]. J Adv Pract Oncol, 2016, 7(1):91-100.
[16]
Vasaikar SV, Straub P, Wang J, et al. LinkedOmics: analyzing multi-omics data within and across 32 cancer types[J]. Nucleic Acids Res, 2018, 46(D1):D956-963.
[17]
Sherman BT, Hao M, Qiu J, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update)[J]. Nucleic Acids Res, 2022, 50(W1):W216-221.
[18]
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nat Protoc, 2009, 4(1):44-57.
[19]
Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets[J]. Nucleic Acids Res, 2021, 49(D1):D605-612.
[20]
Chakraborty E, Sarkar D. Emerging therapies for hepatocellular carcinoma (HCC)[J]. Cancers, 2022, 14(11):2798.
[21]
Putker M, Vos HR, van Dorenmalen K, et al. Evolutionary acquisition of cysteines determines FOXO paralog-specific redox signaling[J]. Antioxid Redox Signal, 2015, 22(1):15-28.
[22]
Chachami G, Paraskeva E, Mingot JM, et al. Transport of hypoxia-inducible factor HIF-1alpha into the nucleus involves importins 4 and 7[J]. Biochem Biophys Res Commun, 2009, 390(2):235-240.
[23]
Chuderland D, Konson A, Seger R. Identification and characterization of a general nuclear translocation signal in signaling proteins[J]. Mol Cell, 2008, 31(6):850-861.
[24]
Yao X, Chen X, Cottonham C, et al. Preferential utilization of Imp7/8 in nuclear import of Smads[J]. J Biol Chem, 2008, 283(33):22867-22874.
[25]
Li SR, Gyselman VG, Dorudi S, et al. Elevated levels of RanBP7 mRNA in colorectal carcinoma are associated with increased proliferation and are similar to the transcription pattern of the proto-oncogene c-myc[J]. Biochem Biophys Res Commun, 2000, 271(2):537-543.
[26]
Pérez-Ramírez M, García-Méndez A, Siordia-Reyes AG, et al. Pediatric ependymoma: GNAO1, ASAH1, IMMT and IPO7 protein expression and 5-year prognosis correlation[J]. Clin Neurol Neurosurg, 2019, 186:105488.
[27]
Szczyrba J, Nolte E, Hart M, et al. Identification of ZNF217, hnRNP-K, VEGF-A and IPO7 as targets for microRNAs that are downregulated in prostate carcinoma[J]. Int J Cancer, 2013, 132(4):775-784.
[1] 张思平, 刘伟, 马鹏程. 全膝关节置换术后下肢轻度内翻对线对疗效的影响[J]. 中华关节外科杂志(电子版), 2023, 17(06): 808-817.
[2] 李越洲, 张孔玺, 李小红, 商中华. 基于生物信息学分析胃癌中PUM的预后意义[J]. 中华普通外科学文献(电子版), 2023, 17(06): 426-432.
[3] 张俊, 罗再, 段茗玉, 裘正军, 黄陈. 胃癌预后预测模型的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 456-461.
[4] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[5] 杨倩, 李翠芳, 张婉秋. 原发性肝癌自发性破裂出血急诊TACE术后的近远期预后及影响因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 33-36.
[6] 栗艳松, 冯会敏, 刘明超, 刘泽鹏, 姜秋霞. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 52-56.
[7] 江振剑, 蒋明, 黄大莉. TK1、Ki67蛋白在分化型甲状腺癌组织中的表达及预后价值研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 623-626.
[8] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[9] 鲁鑫, 许佳怡, 刘洋, 杨琴, 鞠雯雯, 徐缨龙. 早期LC术与PTCD续贯LC术治疗急性胆囊炎对患者肝功能及预后的影响比较[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 648-650.
[10] 张圣平, 邓琼, 张颖, 张建文, 梁辉, 王铸. 孤儿核受体HNF4α在肾透明细胞癌中的表达及意义[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 627-632.
[11] 姜明, 罗锐, 龙成超. 闭孔疝的诊断与治疗:10年73例患者诊疗经验总结[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 706-710.
[12] 李永胜, 孙家和, 郭书伟, 卢义康, 刘洪洲. 高龄结直肠癌患者根治术后短期并发症及其影响因素[J]. 中华临床医师杂志(电子版), 2023, 17(9): 962-967.
[13] 王军, 刘鲲鹏, 姚兰, 张华, 魏越, 索利斌, 陈骏, 苗成利, 罗成华. 腹膜后肿瘤切除术中大量输血患者的麻醉管理特点与分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 844-849.
[14] 索利斌, 刘鲲鹏, 姚兰, 张华, 魏越, 王军, 陈骏, 苗成利, 罗成华. 原发性腹膜后副神经节瘤切除术麻醉管理的特点和分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 771-776.
[15] 王苏贵, 皇立媛, 姜福金, 吴自余, 张先云, 李强, 严大理. 异质性细胞核核糖蛋白A2B1在前列腺癌中的作用及其靶向中药活性成分筛选研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 731-736.
阅读次数
全文


摘要