切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2025, Vol. 15 ›› Issue (01) : 4 -9. doi: 10.3877/cma.j.issn.2095-3232.2026.01.002

述评

基于AI的多模态影像在肝癌诊治中应用及面临挑战
唐玥, 陈家璐, 覃德龙, 李宗龙, 汤朝晖(), 全志伟   
  1. 200082 上海交通大学医学院附属新华医院普通外科
  • 收稿日期:2025-07-22 出版日期:2025-02-10
  • 通信作者: 汤朝晖
  • 基金资助:
    国家自然科学基金(81772521); 上海交通大学医学院附属新华医院院级临床研究培育基金(17CSK06); 上海交通大学医学院多中心临床研究(DLY201807)

Application and challenges of AI-based multimodal imaging in diagnosis and treatment of hepatocellular carcinoma

Yue Tang, Jialu Chen, Delong Qin, Zonglong Li, Zhaohui Tang(), Zhiwei Quan   

  1. Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200082, China
  • Received:2025-07-22 Published:2025-02-10
  • Corresponding author: Zhaohui Tang
引用本文:

唐玥, 陈家璐, 覃德龙, 李宗龙, 汤朝晖, 全志伟. 基于AI的多模态影像在肝癌诊治中应用及面临挑战[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 15(01): 4-9.

Yue Tang, Jialu Chen, Delong Qin, Zonglong Li, Zhaohui Tang, Zhiwei Quan. Application and challenges of AI-based multimodal imaging in diagnosis and treatment of hepatocellular carcinoma[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2025, 15(01): 4-9.

肝细胞癌(HCC)是全球范围内高发且致死率较高的恶性肿瘤之一,对人类健康构成重大威胁。近年来,人工智能(AI)和多模态影像技术在肝癌诊断与治疗中的应用取得显著进展。AI技术,特别是深度学习和传统机器学习方法,应用于影像大数据分析,在肝癌的早期筛查、分期及个性化治疗等方面表现出较高的诊断精确性和治疗决策支持能力。同时,多模态影像技术(如CT、MRI、PET-CT等)在术前评估、手术规划和术中导航方面提高了诊断效率和手术安全性。本文综述了基于AI的多模态影像技术在HCC诊疗中的最新进展,分析了其在临床实践中的潜在价值及面临的挑战。未来,随着AI模型的进一步优化和MDT深入,AI与多模态影像技术将为HCC患者提供更为精准的治疗方案和更好的预后评估。

Hepatocellular carcinoma (HCC) is one of the malignant tumors with high incidence and mortality rates worldwide, which poses severe threat to human health. In recent years, the application of artificial intelligence (AI) and multimodal imaging technology in the diagnosis and treatment of HCC has made remarkable progress. AI technologies, especially deep learning and traditional machine learning methods, have been applied in imaging big data analysis, which show high diagnostic accuracy and treatment decision support capability in early screening, staging and personalized treatment of HCC. Meantime, multimodal imaging technologies (such as CT, MRI, PET-CT, etc.) can improve the diagnostic efficiency and surgical safety in preoperative evaluation, surgical planning and intraoperative navigation. In this article, the latest progress in AI-based multimodal imaging in the diagnosis and treatment of HCC was reviewed, and its potential value and challenges in clinical practice were illustrated. In the future, with further optimization of AI model and the deepening of MDT, AI and multimodal imaging technology are expected to provide more precise treatment regimens and better prognostic evaluation for HCC patients.

[1]
葛云鹏, 崔红元, 宋京海. 人工智能在原发性肝癌诊断、治疗及预后中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2023, 12(4): 367-371. DOI: 10.3877/cma.j.issn.2095-3232.2023.04.002.
[2]
刘红枝, 刘景丰. 人工智能在原发性肝癌外科治疗中的应用现状与展望[J]. 临床肝胆病杂志, 2022, 38(1): 10-14. DOI: 10.3969/j.issn.1001-5256.2022.01.001.
[3]
丁光宇, 高强. 人工智能技术在肝脏肿瘤中的应用与展望[J]. 第二军医大学学报, 2018, 39(8): 865-868. DOI: 10.16781/j.0258-879x.2018.08.0865.
[4]
刘红枝, 刘景丰. 大数据和人工智能在原发性肝癌筛查与诊断中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2023, 12(1): 1-5. DOI: 10.3877/cma.j.issn.2095-3232.2023.01.001.
[5]
程兆瑞, 王彤. 人工智能技术在肝细胞癌诊断、复发及预后预测研究进展[J]. 中山大学学报(医学科学版), 2023, 44(6): 903-909. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2023.0602.
[6]
杨剑, 王壮雄, 方驰华. 多模态影像技术在原发性肝癌外科中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2019, 8(1): 1-5. DOI: 10.3877/cma.j.issn.2095-3232.2019.01.001.
[7]
Calderaro J, Seraphin TP, Luedde T, et al. Artificial intelligence for the prevention and clinical management of hepatocellular carcinoma[J]. J Hepatol, 2022, 76(6): 1348-1361. DOI: 10.1016/j.jhep.2022.01.014.
[8]
卢翼, 陈友三, 杨磊, 等. 基于人工智能的CT检查对肝肿瘤患者良恶性的诊断价值[J]. 影像研究与医学应用, 2023, 7(24): 74-76.
[9]
中国抗癌协会肿瘤介入学专业委员会, 上海市抗癌协会实体肿瘤聚焦诊疗专业委员会. 影像导引肝脏恶性肿瘤多模态消融治疗技术专家共识[J]. 临床肝胆病杂志, 2018, 34(10): 2098-2102. DOI: 10.3969/j.issn.1001-5256.2018.10.009.
[10]
Menegotto AB, Becker CDL, Cazella SC. Computer-aided diagnosis of hepatocellular carcinoma fusing imaging and structured health data[J]. Health Inf Sci Syst, 2021, 9: 20. DOI: 10.1007/s13755-021-00151-x.
[11]
Zhen SH, Cheng M, Tao YB, et al. Deep learning for accurate diagnosis of liver tumor based on magnetic resonance imaging and clinical data[J]. Front Oncol, 2020, 10: 680. DOI: 10.3389/fonc.2020.00680.
[12]
Gao R, Zhao S, Aishanjiang K, et al. Deep learning for differential diagnosis of malignant hepatic tumors based on multi-phase contrast-enhanced CT and clinical data[J]. J Hematol Oncol, 2021, 14(1): 154. DOI: 10.1186/s13045-021-01167-2.
[13]
Wu Y, White GM, Cornelius T, et al. Deep learning LI-RADS grading system based on contrast enhanced multiphase MRI for differentiation between LR-3 and LR-4/LR-5 liver tumors[J]. Ann Transl Med, 2020, 8(11): 701. DOI: 10.21037/atm.2019.12.151.
[14]
Xu Y, Zhou C, He X, et al. Deep learning-assisted LI-RADS grading and distinguishing hepatocellular carcinoma (HCC) from non-HCC based on multiphase CT: a two-center study[J]. Eur Radiol, 2023, 33(12): 8879-8888. DOI: 10.1007/s00330-023-09857-w.
[15]
Min JH, Lee MW, Park HS, et al. Interobserver variability and diagnostic performance of gadoxetic acid-enhanced MRI for predicting microvascular invasion in hepatocellular carcinoma[J]. Radiology, 2020, 297(3): 573-581. DOI: 10.1148/radiol.2020201940.
[16]
涂海斌, 郭佳. 影像学诊断肝癌微血管浸润的研究进展[J]. 中华肝胆外科杂志, 2017, 23(7): 488-490. DOI: 10.3760/cma.j.issn.1007-8118.2017.07.016.
[17]
Deng Y, Jia X, Yu G, et al. Can a proposed double branch multimodality-contribution-aware TripNet improve the prediction performance of the microvascular invasion of hepatocellular carcinoma based on small samples?[J]. Front Oncol, 2022, 12: 1035775. DOI: 10.3389/fonc.2022.1035775.
[18]
肖小娇, 赵文婷, 赵涓涓, 等. 联合多模态特征的无造影剂MRI图像中肝肿瘤的分割和检测[J]. 太原理工大学学报, 2021, 52(3): 411-416. DOI: 10.16355/j.cnki.issn1007-9432tyut.2021.03.012.
[19]
唐胜滢, 孔文韬, 闻宝杰, 等. 多模态超声在肝肿瘤穿刺活检中的应用价值[J]. 临床肿瘤学杂志, 2024, 29(1): 37-42. DOI: 10.3969/j.issn.1009-0460.2024.01.006.
[20]
尹大龙, 施舒鹏. 人工智能在原发性肝癌诊断与治疗中的应用和展望[J]. 中华消化外科杂志, 2024, 23: 236-241. DOI: 10.3760/cma.j.cn115610-20231121-00209.
[21]
徐辉雄, 王丹, 郭乐杭, 等. 肝脏超声造影与人工智能: 一种基于深度典型相关分析和多核学习的肝肿瘤超声造影定性分类方法[C]//海峡两岸医药卫生交流协会. 2018海峡两岸医药卫生交流与合作会议暨第十届海峡两岸超声医学高端论坛论文集, 厦门, 2018. 厦门: 2018: 513-514.
[22]
Sun Z, Shi Z, Xin Y, et al. Artificial intelligent multi-modal point-of-care system for predicting response of transarterial chemoembolization in hepatocellular carcinoma[J]. Front Bioeng Biotechnol, 2021, 9: 761548. DOI: 10.3389/fbioe.2021.761548.
[23]
周敏宏, 李娅. 肝癌患者热消融介入治疗中MRI引导的效果对比[J]. 现代科学仪器, 2021, 38(4): 163-168.
[24]
中国抗癌协会肿瘤消融治疗专业委员会, 中国临床肿瘤学会(CSCO)肿瘤消融治疗专家委员会, 中国医师协会肿瘤消融治疗技术专家组. CT引导下热消融治疗原发性肝癌中国专家共识[J]. 中华内科杂志, 2023, 62(6): 647-660. DOI: 10.3760/cma.j.cn112138-20221226-00960.
[25]
张睿, 周著黄, 吴薇薇, 等. 肝肿瘤热消融治疗穿刺路径规划算法研究综述[J]. 北京工业大学学报, 2020, 46(11): 1300-1314. DOI: 10.11936/bjutxb2019030004.
[26]
Lipkova J, Chen RJ, Chen B, et al. Artificial intelligence for multimodal data integration in oncology[J]. Cancer Cell, 2022, 40(10): 1095-1110. DOI: 10.1016/j.ccell.2022.09.012.
[27]
Lee KH, Lee J, Choi GH, et al. Deep learning-based prediction of post-treatment survival in hepatocellular carcinoma patients using pre-treatment CT images and clinical data[J]. J Imaging Inform Med, 2025, 38(2): 1212-1223. DOI: 10.1007/s10278-024-01227-2.
[28]
Xia Y, Zhou J, Xun X, et al. CT-based multimodal deep learning for non-invasive overall survival prediction in advanced hepatocellular carcinoma patients treated with immunotherapy[J]. Insights Imaging, 2024, 15(1): 214. DOI: 10.1186/s13244-024-01784-8.
[29]
Ma L, Li C, Li H, et al. Deep learning model based on contrast-enhanced MRI for predicting post-surgical survival in patients with hepatocellular carcinoma[J]. Heliyon, 2024, 10(11): e31451. DOI: 10.1016/j.heliyon.2024.e31451.
[1] 周欣, 梁豪进, 邓振宇, 肖菊花, 周小军. 基于人工智能技术评价江西省孕11~13+6周产前超声筛查质量现状及提出能力提升对策[J/OL]. 中华医学超声杂志(电子版), 2025, 22(09): 850-857.
[2] 张振奇, 齐艺涵, 王璐, 胡紫玥, 李婷婷, 卢漫. 大语言模型DeepSeek-R1在甲状腺超声报告质量控制中的初步应用[J/OL]. 中华医学超声杂志(电子版), 2025, 22(09): 832-837.
[3] 江瑶, 蒋程, 余翔, 谭莹, 温昕, 温慧莹, 彭桂艳, 李胜利. 基于注意力机制改进的子宫解剖结构检测与分割多任务模型的性能评估[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 703-710.
[4] 陈明朗, 许凯, 黄稚熙, 梁博诚, 贺杰, 黄海珊, 马微波, 谭莹, 邹志英, 刘晓棠, 彭桂艳, 陈家希, 钟晓红. MobileNetV4:面向产前超声的主动脉弓分支异常智能诊断研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 711-720.
[5] 杨丽仙, 黄稚熙, 梁博诚, 欧阳淑媛, 陈明朗, 赵英丽, 马薇波, 缪敬, 王磊, 袁鹰. 基于产前时序超声数据的新生儿出生体重智能预测[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 721-732.
[6] 刘晴晴, 俞劲, 徐玮泽, 张志伟, 潘晓华, 舒强, 叶菁菁. OBICnet图像分类模型在小儿先天性心脏病超声筛查中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 754-760.
[7] 杨雯林, 吴元魁. 影像组学在胰腺神经内分泌瘤诊疗中的研究进展[J/OL]. 中华普通外科学文献(电子版), 2025, 19(06): 426-432.
[8] 毛俊, 蔡兆伦, 尹晓南, 沈朝勇, 张波. 影像组学预测模型在胃肠间质瘤诊断及预后中的研究进展[J/OL]. 中华普通外科学文献(电子版), 2025, 19(06): 421-425.
[9] 梅昊楠, 杨瑞, 刘修恒. 人工智能辅助病理学图像分析在前列腺癌诊断中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2026, 20(01): 1-7.
[10] 丁小博, 陈洁, 王艳波. 人工智能在泌尿系结石诊治中的应用进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2026, 20(01): 15-21.
[11] 樊帆, 黄浩, 付莉丽, 周春梅, 马雪霞, 黄海. 下尿路功能障碍患者智能化尿控标准病房的建设及成效[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2026, 20(01): 44-50.
[12] 许侨东, 马志延, 冯庚壬, 钟海彬, 刘坚锐, 古松钢. 肝肺多发性原发性癌转化治疗后行腹腔镜肝右前叶切除术一例(附视频)[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 973-976.
[13] 段兴福, 唐建中, 孙志为, 陈业盛, 高波, 费振浩. 后腹膜入路腹腔镜微波消融术治疗复发性肝癌的临床疗效[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 919-924.
[14] 朱恒美, 董志涛, 房树恒, 贺丹丹, 张晓丽, 周静, 翟健, 耿利, 杨甲梅. 肝癌肝动脉持续灌注化疗患者卧床时限改变的前瞻性研究[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 925-930.
[15] 常芳媛, 乔春梅, 王欣, 王博冉, 赵梓孚, 李春歌, 王晓磊. 多模态超声及人工智能在细菌性和非细菌性关节炎中应用的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(08): 606-611.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?