| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
Calderaro J, Seraphin TP, Luedde T, et al. Artificial intelligence for the prevention and clinical management of hepatocellular carcinoma[J]. J Hepatol, 2022, 76(6): 1348-1361. DOI: 10.1016/j.jhep.2022.01.014.
|
| [8] |
卢翼, 陈友三, 杨磊, 等. 基于人工智能的CT检查对肝肿瘤患者良恶性的诊断价值[J]. 影像研究与医学应用, 2023, 7(24): 74-76.
|
| [9] |
|
| [10] |
Menegotto AB, Becker CDL, Cazella SC. Computer-aided diagnosis of hepatocellular carcinoma fusing imaging and structured health data[J]. Health Inf Sci Syst, 2021, 9: 20. DOI: 10.1007/s13755-021-00151-x.
|
| [11] |
Zhen SH, Cheng M, Tao YB, et al. Deep learning for accurate diagnosis of liver tumor based on magnetic resonance imaging and clinical data[J]. Front Oncol, 2020, 10: 680. DOI: 10.3389/fonc.2020.00680.
|
| [12] |
Gao R, Zhao S, Aishanjiang K, et al. Deep learning for differential diagnosis of malignant hepatic tumors based on multi-phase contrast-enhanced CT and clinical data[J]. J Hematol Oncol, 2021, 14(1): 154. DOI: 10.1186/s13045-021-01167-2.
|
| [13] |
Wu Y, White GM, Cornelius T, et al. Deep learning LI-RADS grading system based on contrast enhanced multiphase MRI for differentiation between LR-3 and LR-4/LR-5 liver tumors[J]. Ann Transl Med, 2020, 8(11): 701. DOI: 10.21037/atm.2019.12.151.
|
| [14] |
Xu Y, Zhou C, He X, et al. Deep learning-assisted LI-RADS grading and distinguishing hepatocellular carcinoma (HCC) from non-HCC based on multiphase CT: a two-center study[J]. Eur Radiol, 2023, 33(12): 8879-8888. DOI: 10.1007/s00330-023-09857-w.
|
| [15] |
Min JH, Lee MW, Park HS, et al. Interobserver variability and diagnostic performance of gadoxetic acid-enhanced MRI for predicting microvascular invasion in hepatocellular carcinoma[J]. Radiology, 2020, 297(3): 573-581. DOI: 10.1148/radiol.2020201940.
|
| [16] |
|
| [17] |
Deng Y, Jia X, Yu G, et al. Can a proposed double branch multimodality-contribution-aware TripNet improve the prediction performance of the microvascular invasion of hepatocellular carcinoma based on small samples?[J]. Front Oncol, 2022, 12: 1035775. DOI: 10.3389/fonc.2022.1035775.
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
徐辉雄, 王丹, 郭乐杭, 等. 肝脏超声造影与人工智能: 一种基于深度典型相关分析和多核学习的肝肿瘤超声造影定性分类方法[C]//海峡两岸医药卫生交流协会. 2018海峡两岸医药卫生交流与合作会议暨第十届海峡两岸超声医学高端论坛论文集, 厦门, 2018. 厦门: 2018: 513-514.
|
| [22] |
Sun Z, Shi Z, Xin Y, et al. Artificial intelligent multi-modal point-of-care system for predicting response of transarterial chemoembolization in hepatocellular carcinoma[J]. Front Bioeng Biotechnol, 2021, 9: 761548. DOI: 10.3389/fbioe.2021.761548.
|
| [23] |
周敏宏, 李娅. 肝癌患者热消融介入治疗中MRI引导的效果对比[J]. 现代科学仪器, 2021, 38(4): 163-168.
|
| [24] |
|
| [25] |
|
| [26] |
Lipkova J, Chen RJ, Chen B, et al. Artificial intelligence for multimodal data integration in oncology[J]. Cancer Cell, 2022, 40(10): 1095-1110. DOI: 10.1016/j.ccell.2022.09.012.
|
| [27] |
Lee KH, Lee J, Choi GH, et al. Deep learning-based prediction of post-treatment survival in hepatocellular carcinoma patients using pre-treatment CT images and clinical data[J]. J Imaging Inform Med, 2025, 38(2): 1212-1223. DOI: 10.1007/s10278-024-01227-2.
|
| [28] |
Xia Y, Zhou J, Xun X, et al. CT-based multimodal deep learning for non-invasive overall survival prediction in advanced hepatocellular carcinoma patients treated with immunotherapy[J]. Insights Imaging, 2024, 15(1): 214. DOI: 10.1186/s13244-024-01784-8.
|
| [29] |
Ma L, Li C, Li H, et al. Deep learning model based on contrast-enhanced MRI for predicting post-surgical survival in patients with hepatocellular carcinoma[J]. Heliyon, 2024, 10(11): e31451. DOI: 10.1016/j.heliyon.2024.e31451.
|