[1] |
Blechacz B. Cholangiocarcinoma: current knowledge and new developments[J]. Gut Liver,2017, 11(1):13-26.
|
[2] |
Jonas S, Thelen A, Benckert C, et al. Extended liver resection for intrahepatic cholangiocarcinoma: a comparison of the prognostic accuracy of the fifth and sixth editions of the TNM classification[J]. Ann Surg, 2009, 249(2):303-309.
|
[3] |
Ribero D, Pinna AD, Guglielmi A, et al. Surgical approach for long-term survival of patients with intrahepatic cholangiocarcinoma: a multi-institutional analysis of 434 patients[J]. Arch Surg, 2012, 147(12):1107-1113.
|
[4] |
Malhi H, Gores GJ. Cholangiocarcinoma: modern advances in understanding a deadly old disease[J]. J Hepatol, 2006, 45(6):856-867.
|
[5] |
齐灿,黄强,刘臣海.超声靶向破坏载氧微泡技术对缺氧微环境下胆管癌细胞生长影响[J].中华肿瘤防治杂志,2017, 24(23): 1645-1650, 1655.
|
[6] |
Yuan D, Huang S, Berger E, et al. Kupffer cell-derived Tnf triggers cholangiocellular tumorigenesis through JNK due to chronic mitochondrial dysfunction and ROS[J]. Cancer Cell, 2017, 31(6): 771-789, e6.
|
[7] |
李舒欢,韩继武.成纤维细胞生长因子21对二乙基亚硝胺诱导的L02肝细胞癌变的抑制作用[J].临床肝胆病杂志,2018,34(2):321-326.
|
[8] |
张静,李晓莉,王萌,等.成纤维细胞生长因子受体-癌症治疗新靶点[J].现代生物医学进展,2015, 15(17):3393-3397, 3352.
|
[9] |
Javle M, Lowery M, Shroff RT, et al. Phase II study of BGJ398 in patients with FGFR-altered advanced cholangiocarcinoma[J]. J Clin Oncol, 2018, 36(3):276-282.
|
[10] |
Bresnick AR, Weber DJ, Zimmer DB. S100 proteins in cancer[J]. Nat Rev Cancer, 2015, 15(2):96-109.
|
[11] |
Andrés Cerezo L, Hulejová H, Šumová B, et al. Pro-inflammatory S100A11 is elevated in inflammatory myopathies and reflects disease activity and extramuscular manifestations in myositis[J]. Cytokine, 2019(116):13-20.
|
[12] |
Zhang S, Wang Z, Liu W, et al. Distinct prognostic values of S100 mRNA expression in breast cancer[J]. Sci Rep, 2017(7):39786.
|
[13] |
Koh SA, Lee KH. HGF-mediated S100A11 overexpression enhances proliferation and invasion of gastric cancer[J]. Am J Transl Res, 2018, 10(11):3385-3394.
|
[14] |
Zhang MX, Gan W, Jing CY, et al. S100A11 promotes cell proliferation via P38/MAPK signaling pathway in intrahepatic cholangiocarcinoma[J]. Mol Carcinog, 2019, 58(1):19-30.
|
[15] |
de Groot AF, Kuijpers CJ, Kroep JR. CDK4/6 inhibition in early and metastatic breast cancer: a review[J]. Cancer Treat Rev, 2017(60):130-138.
|
[16] |
Hamilton E, Infante JR. Targeting CDK4/6 in patients with cancer[J]. Cancer Treat Rev, 2016(45):129-138.
|
[17] |
Dhillon S. Palbociclib: first global approval[J]. Drugs, 2015, 75(5):543-551.
|
[18] |
Olmez I, Brenneman B, Xiao A, et al. Combined CDK4/6 and mTOR inhibition is synergistic against glioblastoma via multiple mechanisms[J]. Clin Cancer Res, 2017, 23(22):6958-6968.
|
[19] |
陈骏,史炯,毛谅,等.异柠檬酸脱氢酶基因突变在肝内胆管癌中的作用[J].中华肝胆外科杂志,2015, 21(10):715-717.
|
[20] |
Razumilava N, Gores GJ. Cholangiocarcinoma[J]. Lancet, 2014, 383(9935):2168-2179.
|
[21] |
Borger DR, Goyal L, Yau T, et al. Circulating oncometabolite 2-hydroxyglutarate is a potential surrogate biomarker in patients with isocitrate dehydrogenase-mutant intrahepatic cholangiocarcinoma[J]. Clin Cancer Res, 2014, 20(7):1884-1890.
|
[22] |
Basan M, Hui S, Okano H, et al. Overflow metabolism in Escherichia coli results from efficient proteome allocation[J]. Nature, 2015, 528(7580):99-104.
|
[23] |
Lu C, Ward PS, Kapoor GS, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation[J]. Nature, 2012, 483(7390):474-478.
|