[1] |
Blechacz B. Cholangiocarcinoma: current knowledge and new developments[J]. Gut Liver, 2017, 11(1):13-26.
|
[2] |
Lewis HL, Rahnemai-Azar AA, Dillhoff M, et al. Current management of perihilar cholangiocarcinoma and future perspectives[J]. Chirurgia, 2017, 112(3):193-207.
|
[3] |
Zhou B, Li Z, Yang H, et al. Extracellular miRNAs: origin, function and biomarkers in hepatic diseases[J]. J Biomed Nanotechnol, 2014, 10(10):2865-2890.
|
[4] |
Zhang C, Wang P, Li Y, et al. Role of microRNAs in the development of hepatocellular carcinoma in nonalcoholic fatty liver disease[J]. Anat Rec, 2019, 302(2):193-200.
|
[5] |
Liu Y, Uzair-Ur-Rehman, Guo Y, et al. miR-181b functions asan oncomiR in colorectal cancer by targeting PDCD4[J]. Protein Cell, 2016, 7(10):722-734.
|
[6] |
Chen Y, Li R, Pan M, et al. MiR-181b modulates chemosensitivity of glioblastoma multiforme cells to temozolomide by targeting the epidermal growth factor receptor[J]. J Neurooncol, 2017, 133(3): 477-485.
|
[7] |
Li D, Jian W, Wei C, et al. Down-regulation of miR-181b promotes apoptosis by targeting CYLD in thyroid papillary cancer[J]. Int J Clin Exp Pathol, 2014, 7(11):7672-7680.
|
[8] |
Xia Y, Gao Y. MicroRNA-181b promotes ovarian cancer cell growth and invasion by targeting LATS2[J]. Biochem Biophys Res Commun, 2014, 447(3):446-451.
|
[9] |
Shin HR, Oh JK, Lim MK, et al. Descriptive epidemiology of cholangiocarcinoma and clonorchiasis in Korea[J]. J Korean Med Sci, 2010, 25(7):1011-1016.
|
[10] |
Doherty B, Nambudiri VE, Palmer WC. Update on the diagnosis and treatment of cholangiocarcinoma[J]. Curr Gastroenterol Rep, 2017, 19(1):2.
|
[11] |
Aguda BD, del Rosario RC, Chan MW. Oncogene-tumor suppressor gene feedback interactions and their control[J]. Math Biosci Eng, 2015, 12(6):1277-1288.
|
[12] |
Scaletta G, Plotti F, Luvero D, et al. The role of novel biomarker HE4 in the diagnosis, prognosis and follow-up of ovarian cancer: a systematic review[J]. Expert Rev Anticancer Ther, 2017, 17(9):827-839.
|
[13] |
Guo Q, Jian Z, Jia B, et al. CXCL7 promotes proliferation and invasion of cholangiocarcinoma cells[J]. Oncol Rep, 2017, 37(2): 1114-1122.
|
[14] |
Han S, Wang D, Tang G, et al. Suppression of miR-16 promotes tumor growth and metastasis through reversely regulating YAP1 in human cholangiocarcinoma[J]. Oncotarget, 2017, 8(34):56635-56650.
|
[15] |
Long HD, Ma YS, Yang HQ, et al. Reduced hsa-miR-124-3p levels are associated with the poor survival of patients with hepatocellular carcinoma[J]. Mol Biol Rep, 2018, 45(6):2615-2623.
|
[16] |
Zhang Y, Zhang D, Lv J, et al. MiR-125a-5p suppresses bladder cancer progression through targeting FUT4[J]. Biomed Pharmacother, 2018(108):1039-1047.
|
[17] |
Wan P, Chi X, Du Q, et al. miR-383 promotes cholangiocarcinoma cell proliferation, migration, and invasion through targeting IRF1[J]. J Cell Biochem, 2018, 119(12):9720-9729.
|
[18] |
Wu YF, Li ZR, Cheng ZQ, et al. Decrease of miR-622 expression promoted the proliferation, migration and invasion of cholangiocarcinoma cells by targeting regulation of c-Myc[J]. Biomed Pharmacother, 2017(96):7-13.
|
[19] |
Wang P, Lv L. miR-26a induced the suppression of tumor growth of cholangiocarcinoma via KRT19 approach[J]. Oncotarget, 2016, 7(49):81367-81376.
|
[20] |
Zheng J, Wu C, Xu Z, et al. Hepatic stellate cell is activated by microRNA-181b via PTEN/Akt pathway[J]. Mol Cell Biochem, 2015, 398(1/2):1-9.
|