[1] |
Breitbach S, Tug S, Helmig S, et al. Direct quantification of cell-free, circulating DNA from unpurified plasma[J]. PLoS One, 2014, 9(3):e87838.
|
[2] |
Lucey MR, Terrault N, Ojo L, et al. Long-term management of the successful adult liver transplant: 2012 practice guideline by the American Association for the Study of Liver Diseases and the American Society of Transplantation[J]. Liver Transpl, 2013, 19(1):3-26.
|
[3] |
Voskuil MD, Mittal S, Sharples EJ, et al. Improving monitoring after pancreas transplantation alone: fine-tuning of an old technique[J]. Clin Transplant, 2014, 28(9):1047-1053.
|
[4] |
Benesova L, Belsanova B, Suchanek S, et al. Mutation-based detection and monitoring of cell-free tumor DNA in peripheral blood of cancer patients[J]. Anal Biochem, 2013, 433(2):227-234.
|
[5] |
Esposito A, Bardelli A, Criscitiello C, et al. Monitoring tumor-derived cell-free DNA in patients with solid tumors: clinical perspectives and research opportunities[J]. Cancer Treat Rev, 2014, 40(5):648-655.
|
[6] |
Sun K, Jiang P, Chan KC, et al. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments[J]. Proc Natl Acad Sci U S A, 2015, 112(40):E5503-5512.
|
[7] |
Kalnina Z, Meistere I, Kikuste I, et al. Emerging blood-based biomarkers for detection of gastric cancer[J]. World J Gastroenterol, 2015, 21(41):11636-11653.
|
[8] |
Fujita Y, Araya J, Ochiya T. Extracellular vesicles in smoking-related lung diseases[J]. Oncotarget, 2015, 6(41):43144-43145.
|
[9] |
Lui YY, Woo KS, Wang AY, et al. Origin of plasma cell-free DNA after solid organ transplantation[J]. Clin Chem, 2003, 49(3):495-496.
|
[10] |
Su YH, Wang M, Brenner DE, et al. Human urine contains small, 150 to 250 nucleotide-sized, soluble DNA derived from the circulation and may be useful in the detection of colorectal cancer[J]. J Mol Diagn, 2004, 6(2):101-107.
|
[11] |
Gielis EM, Ledeganck KJ, De Winter BY, et al. Cell-free DNA: an upcoming biomarker in transplantation[J]. Am J Transplant, 2015, 15(10):2541-2551.
|
[12] |
Beck J, Bierau S, Balzer S, et al. Digital droplet PCR for rapid quantification of donor DNA in the circulation of transplant recipients as a potential universal biomarker of graft injury[J]. Clin Chem, 2013, 59(12):1732-1741.
|
[13] |
De Vlaminck I, Valantine HA, Snyder TM, et al. Circulating cell-free DNA enables noninvasive diagnosis of heart transplant rejection[J]. Sci Transl Med, 2014, 6(241):241-277.
|
[14] |
Kanzow P, Kollmar O, Schütz E, et al. Graft-derived cell-free DNA as an early organ integrity biomarker after transplantation ofa marginal HELLP syndrome donor liver[J]. Transplantation, 2014, 98(5):e43-45.
|
[15] |
Sigdel TK, Vitalone MJ, Tran TQ, et al. A rapid noninvasive assay for the detection of renal transplant injury[J]. Transplantation, 2013, 96(1):97-101.
|
[16] |
Snyder TM, Khush KK, Valantine HA, et al. Universal noninvasive detection of solid organ transplant rejection[J]. Proc Natl Acad SciU S A, 2011, 108(15):6229-6234.
|
[17] |
De Vlaminck I, Martin L, Kertesz M, et al. Noninvasive monitoring of infection and rejection after lung transplantation[J]. Proc Natl Acad Sci U S A, 2015, 112(43):13336-13341.
|
[18] |
Macher HC, Suárez-Artacho G, Guerrero JM, et al. Monitoring of transplanted liver health by quantification of organ-specific genomic marker in circulating DNA from receptor[J]. PLoS One, 2014, 9(12):e113987.
|
[19] |
Gadi VK, Nelson JL, Boespflug ND, et al. Soluble donor DNA concentrations in recipient serum correlate with pancreas-kidney rejection[J]. Clin Chem, 2006, 52(3):379-382.
|
[20] |
Zou J, Duffy B, Slade M, et al. Rapid detection of donor cell free DNA in lung transplant recipients with rejections using donor-recipient HLA mismatch[J]. Hum Immunol, 2017, 78(4):342-349.
|
[21] |
Oellerich M, Walson PD, Beck J, et al. Graft-derived cell-free DNA as a marker of transplant graft injury[J]. Ther Drug Monit, 2016,38 Suppl 1: S75-79.
|
[22] |
Tao J, Yang X, Han Z, et al. Serum microRNA-99a helps detect acute rejection in renal transplantation[J]. Transplant Proc, 2015, 47(6):1683-1687.
|
[23] |
Sui W, Yang M, Li F, et al. Serum microRNAs as new diagnostic biomarkers for pre- and post-kidney transplantation[J]. Transplant Proc, 2014, 46(10):3358-3362.
|
[24] |
Neumann A, Napp LC, Kleeberger JA, et al. MicroRNA 628-5p as a novel biomarker for cardiac allograft vasculopathy[J]. Transplantation, 2017, 101(1):e26-33.
|
[25] |
Li B, Hartono C, Ding R, et al. Noninvasive diagnosis of renal-allograft rejection by measurement of messenger RNA for perforin and granzyme B in urine[J]. N Engl J Med, 2001, 344(13):947-954.
|
[26] |
Muthukumar T, Ding R, Dadhania D, et al. Serine proteinase inhibitor-9, an endogenous blocker of granzyme B/perforin lytic pathway, is hyperexpressed during acute rejection of renal allografts[J]. Transplantation, 2003, 75(9):1565-1570.
|
[27] |
Radtke J, Dietze N, Fischer L, et al. Incidence of BK polyomavirus infection after kidney transplantation is independent of type of immunosuppressive therapy[J]. Transpl Infect Dis, 2016, 18(6):850-855.
|
[28] |
Dadhania D, Muthukumar T, Ding R, et al. Molecular signatures of urinary cells distinguish acute rejection of renal allografts from urinary tract infection[J]. Transplantation, 2003, 75(10):1752-1754.
|
[29] |
Dadhania D, Snopkowski C, Ding R, et al. Validation of noninvasive diagnosis of BK virus nephropathy and identification of prognostic biomarkers[J]. Transplantation, 2010, 90(2):189-197.
|
[30] |
Tatapudi RR, Muthukumar T, Dadhania D, et al. Noninvasive detection of renal allograft inflammation by measurements of mRNA for IP-10 and CXCR3 in urine[J]. Kidney Int, 2004, 65(6):2390-2397.
|
[31] |
Liu X, Dong C, Jiang Z, et al. MicroRNA-10b downregulation mediates acute rejection of renal allografts by derepressing BCL2L11[J]. Exp Cell Res, 2015, 333(1):155-163.
|