[1] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
|
[2] |
郭江,李洪璐,李常青.TACE联合微波消融治疗中晚期肝癌的临床疗效分析[J].川北医学院学报,2019, 34(2):219-222.
|
[3] |
Dhiman VK, Bolt MJ, White KP. Nuclear receptors in cancer-uncovering new and evolving roles through genomic analysis[J]. Nat Rev Genet,2018,19(3):160-174.
|
[4] |
Yang F, Cui P, Lu Y, et al. Requirement of the transcription factor YB-1 for maintaining the stemness of cancer stem cells and reverting differentiated cancer cells into cancer stem cells[J]. Stem Cell Res Ther,2019,10(1):233.
|
[5] |
Tang L, Yu W, Wang Y, et al. Anlotinib inhibits synovial sarcoma by targeting GINS1:a novel downstream target oncogene in progression of synovial sarcoma[J]. Clin Transl Oncol, 2019, 21(12): 1624-1633.
|
[6] |
Lian YF, Li SS, Huang YL, et al. Up-regulated and interrelated expressions of GINS subunits predict poor prognosis in hepatocellular carcinoma[J]. Biosci Rep,2018, 38(6): pii:BSR20181178.
|
[7] |
Jacobsen A, Bosch LJW, Martens-de Kemp SR, et al. Aurora kinase A (AURKA) interaction with Wnt and Ras-MAPK signalling pathways in colorectal cancer[J]. Sci Rep, 2018, 8(1):7522.
|
[8] |
Wang-Bishop L, Chen Z, Gomaa A, et al. Inhibition of AURKA reduces proliferation and survival of gastrointestinal cancer cells with activated KRAS by preventing activation of RPS6KB1[J]. Gastroenterology, 2019, 156(3):662-675, e7.
|
[9] |
Wu C, Lyu J, Yang EJ, et al. Targeting AURKA-CDC25C axis to induce synthetic lethality in ARID1A-deficient colorectal cancer cells[J]. Nat Commun, 2018, 9(1):3212.
|
[10] |
Dauch D, Rudalska R, Cossa G, et al. A MYC-aurora kinase A protein complex represents an actionable drug target in p53-altered liver cancer[J]. Nat Med, 2016, 22(7):744-753.
|
[11] |
Zhang X, Pan Y, Fu H, et al. Nucleolar and spindle associated protein 1 (NUSAP1) inhibits cell proliferation and enhances susceptibility to epirubicin in invasive breast cancer cells by regulating cyclin D kinase (CDK1) and DLGAP5 expression[J]. Med Sci Monit, 2018, 24:8553-8564.
|
[12] |
Xu Z, Wang Y, Xiong J, et al. NUSAP1 knockdown inhibits cell growth and metastasis of non-small-cell lung cancer through regulating BTG2/PI3K/Akt signaling[J]. J Cell Physiol, 2019, DOI: 10.1002/jcp.29282[Epub ahead of print].
|
[13] |
Wang Y, Ju L, Xiao F, et al. Downregulation of nucleolar and spindle-associated protein 1 expression suppresses liver cancer cell function[J]. Exp Ther Med, 2019, 17(4):2969-2978.
|
[14] |
Liu LM, Xiong DD, Lin P, et al. DNA topoisomerase 1 and 2A function as oncogenes in liver cancer and may be direct targets of nitidine chloride[J]. Int J Oncol, 2018, 53(5):1897-1912.
|
[15] |
Pai VC, Hsu CC, Chan TS, et al. ASPM promotes prostate cancer stemness and progression by augmenting Wnt-Dvl-3-β-catenin signaling[J]. Oncogene, 2019, 38(8):1340-1353.
|
[16] |
He B, Yin J, Gong S, et al. Bioinformatics analysis of key genes and pathways for hepatocellular carcinoma transformed from cirrhosis[J]. Medicine, 2017, 96(25):e6938.
|
[17] |
Cai C, Wang W, Tu Z. Aberrantly DNA methylated-differentially expressed genes and pathways in hepatocellular carcinoma[J]. J Cancer, 2019, 10(2):355-366.
|
[18] |
Zhu S, Zhao D, Yan L, et al. BMI1 regulates androgen receptor in prostate cancer independently of the polycomb repressive complex 1[J]. Nat Commun, 2018, 9(1):500.
|
[19] |
Ye BL, Zheng R, Ruan XJ, et al. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer via p53/PRC1 pathway[J]. Biochem Biophys Res Commun, 2018, 495(1):414-420.
|
[20] |
Hanselmann S, Wolter P, Malkmus J, et al. The microtubule-associated protein PRC1 is a potential therapeutic target for lung cancer[J]. Oncotarget, 2017, 9(4):4985-4997.
|
[21] |
Yang XM, Cao XY, He P, et al. Overexpression of Rac GTPase activating protein 1 contributes to proliferation of cancer cells by reducing Hippo signaling to promote cytokinesis[J]. Gastroenterology, 2018, 155(4):1233-1249, e22.
|
[22] |
Chen J, Xia H, Zhang X, et al. ECT2 regulates the Rho/ERK signalling axis to promote early recurrence in human hepatocellular carcinoma[J]. J Hepatol, 2015, 62(6):1287-1295.
|
[23] |
Wu M, Liu Z, Zhang A, et al. Identification of key genes and pathways in hepatocellular carcinoma: a preliminary bioinformatics analysis[J]. Medicine, 2019, 98(5):e14287.
|
[24] |
Li B, Pu K, Wu X. Identifying novel biomarkers in hepatocellular carcinoma by weighted gene co-expression network analysis[J]. Cell Biochem, 2019, DOI: 10.1002/jcb.28420[Epub ahead of print].
|
[25] |
Kim HE, Kim DG, Lee KJ, et al. Frequent amplification of CENPF, GMNN and CDK13 genes in hepatocellular carcinomas[J]. PLoS One, 2012, 7(8): e43223.
|