[1] |
Ruzzenente A, Conci S, Valdegamberi A, et al. Role of surgery in the treatment of intrahepatic cholangiocarcinoma[J]. Eur Rev Med Pharmacol Sci, 2015, 19(15):2892-2900.
|
[2] |
Lee JI, Campbell JS. Role of desmoplasia in cholangiocarcinoma and hepatocellular carcinoma[J]. J Hepatol, 2014, 61(2): 432-434.
|
[3] |
Kalluri R, Zeisberg M. Fibroblasts in cancer[J]. Nat Rev Cancer, 2006, 6(5):392-401.
|
[4] |
Andersen JB, Spee B, Blechacz BR, et al. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors[J]. Gastroenterology, 2012, 142(4): 1021-1031, e15.
|
[5] |
Jacob M, Chang L, Puré E. Fibroblast activation protein in remodeling tissues[J]. Curr Mol Med, 2012, 12(10):1220-1243.
|
[6] |
Lemoinne S, Thabut D, Housset C. Portal myofibroblasts connect angiogenesis and fibrosis in liver[J]. Cell Tissue Res, 2016, 365(3): 583-589.
|
[7] |
Itou RA, Uyama N, Hirota S, et al. Immunohistochemical characterization of cancer-associated fibroblasts at the primary sites and in the metastatic lymph nodes of human intrahepatic cholangiocarcinoma[J]. Hum Pathol, 2019(83):77-89.
|
[8] |
Cadamuro M, Nardo G, Indraccolo S, et al. Platelet-derived growth factor-D and Rho GTPases regulate recruitment of cancer-associated fibroblasts in cholangiocarcinoma[J]. Hepatology, 2013, 58(3):1042-1053.
|
[9] |
Kalluri R. The biology and function of fibroblasts in cancer[J].Nat Rev Cancer, 2016, 16(9):582-598.
|
[10] |
Weber CE, Kothari AN, Wai PY, et al. Osteopontin mediates an MZF1-TGF-beta1-dependent transformation of mesenchymal stem cells into cancer-associated fibroblasts in breast cancer[J]. Oncogene, 2015, 34(37):4821-4833.
|
[11] |
Zheng L, Xu C, Guan Z, et al. Galectin-1 mediates TGF-β-induced transformation from normal fibroblasts into carcinoma-associated fibroblasts and promotes tumor progression in gastric cancer[J].Am J Transl Res, 2016, 8(4):1641-1658.
|
[12] |
Shiga K, Hara M, Nagasaki T, et al. Cancer-associated fibroblasts: their characteristics and their roles in tumor growth[J]. Cancers, 2015, 7(4):2443-2458.
|
[13] |
Dominguez C, David JM, Palena C. Epithelial-mesenchymal transition and inflammation at the site of the primary tumor[J]. Semin Cancer Biol, 2017(47):177-184.
|
[14] |
Petrova V, Annicchiarico-Petruzzelli M, Melino G, et al. The hypoxic tumour microenvironment[J]. Oncogenesis, 2018, 7(1):10.
|
[15] |
Clapéron A, Mergey M, Aoudjehane L, et al. Hepatic myofibroblasts promote the progression of human cholangiocarcinoma through activation of epidermal growth factor receptor[J]. Hepatology, 2013, 58(6):2001-2011.
|
[16] |
Gentilini A, Rombouts K, Galastri S, et al. Role of the stromal-derived factor-1 (SDF-1)-CXCR4 axis in the interaction between hepatic stellate cells and cholangiocarcinoma[J]. J Hepatol, 2012, 57(4):813-820.
|
[17] |
Vaquero J, Lobe C, Tahraoui S, et al. The IGF2/IR/IGF1R pathway in tumor cells and myofibroblasts mediates resistance to EGFR inhibition in cholangiocarcinoma[J]. Clin Cancer Res, 2018, 24(17): 4282-4296.
|
[18] |
Sha M, Jeong S, Qiu BJ, et al. Isolation of cancer-associated fibroblasts and its promotion to the progression of intrahepatic cholangiocarcinoma[J]. Cancer Med, 2018, 7(9):4665-4677.
|
[19] |
Okabe H, Beppu T, Hayashi H, et al. Hepatic stellate cells may relate to progression of intrahepatic cholangiocarcinoma[J]. Ann Surg Oncol, 2009, 16(9):2555-2564.
|
[20] |
Thongchot S, Ferraresi A, Vidoni C, et al. Resveratrol interrupts the pro-invasive communication between cancer associated fibroblasts and cholangiocarcinoma cells[J]. Cancer Lett, 2018(430):160-171.
|
[21] |
Techasen A, Loilome W, Namwat N, et al. Loss of E-cadherin promotes migration and invasion of cholangiocarcinoma cells and serves as a potential marker of metastasis[J]. Tumour Biol, 2014, 35(9):8645-8652.
|
[22] |
Heits N, Heinze T, Bernsmeier A, et al. Influence of mTOR-inhibitors and mycophenolic acid on human cholangiocellular carcinoma and cancer associated fibroblasts[J]. BMC Cancer, 2016(16):322.
|
[23] |
Cadamuro M, Brivio S, Mertens J, et al. Platelet-derived growth factor-D enables liver myofibroblasts to promote tumor lymphangiogenesis in cholangiocarcinoma[J]. J Hepatol, 2019, 70(4):700-709.
|
[24] |
Stacker SA, Williams SP, Karnezis T, et al. Lymphangiogenesis and lymphatic vessel remodelling in cancer[J]. Nat Rev Cancer, 2014, 14(3):159-172.
|
[25] |
Mertens JC, Fingas CD, Christensen JD, et al. Therapeutic effects of deleting cancer-associated fibroblasts in cholangiocarcinoma[J]. Cancer Res, 2013, 73(2):897-907.
|
[26] |
Obulkasim H, Shi X, Wang J, et al. Podoplanin is an important stromal prognostic marker in perihilar cholangiocarcinoma[J]. Oncol Lett, 2018, 15(1):137-146.
|
[27] |
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297.
|
[28] |
Utaijaratrasmi P, Vaeteewoottacharn K, Tsunematsu T, et al. The microRNA-15a-PAI-2 axis in cholangiocarcinoma-associated fibroblasts promotes migration of cancer cells[J]. Mol Cancer, 2018, 17(1):10.
|
[29] |
Kim CD, Sohn KC, Lee SS, et al. Plasminogen activator inhibitor-2 (PAI-2) secreted from activated mast cells induces α-smooth muscle actin (α-SMA) expression in dermal fibroblasts[J]. J Dermatol Sci, 2011, 62(3):204-206.
|
[30] |
Ferraresi A, Phadngam S, Morani F, et al. Resveratrol inhibits IL-6-induced ovarian cancer cell migration through epigenetic up-regulation of autophagy[J]. Mol Carcinog, 2017, 56(3): 1164-1181.
|
[31] |
Liu LZ, Yang LX, Zheng BH, et al. CK7/CK19 index: a potential prognostic factor for postoperative intrahepatic cholangiocarcinoma patients[J]. J Surg Oncol, 2018, 117(7): 1531-1539.
|
[32] |
Subimerb C, Wongkham C, Khuntikeo N, et al. Transcriptional profiles of peripheral blood leukocytes identify patients with cholangiocarcinoma and predict outcome[J]. Asian Pac J Cancer Prev, 2014, 15(10): 4217-4224.
|