[1] |
Tang A, Hallouch O, Chernyak V, et al. Epidemiology of hepatocellular carcinoma: target population for surveillance and diagnosis[J]. Abdom Radiol, 2018, 43(1):13-25.
|
[2] |
Tabassum DP, Polyak K. Tumorigenesis: it takes a village[J]. Nat Rev Cancer, 2015, 15(8):473-483.
|
[3] |
Hidalgo M, Amant F, Biankin AV, et al. Patient-derived xenograft models: an emerging platform for translational cancer research[J]. Cancer Discov, 2014, 4(9):998-1013.
|
[4] |
Blumer T, Fofana I, Matter MS, et al. Hepatocellular carcinoma xenografts established from needle biopsies preserve the characteristics of the originating tumors[J]. Hepatol Commun, 2019, 3(7):971-986.
|
[5] |
Gu Q, Zhang B, Sun H, et al. Genomic characterization of a large panel of patient-derived hepatocellular carcinoma xenograft tumor models for preclinical development[J]. Oncotarget, 2015, 6(24): 20160-20176.
|
[6] |
Tischfield DJ, Ackerman D, Noji M, et al. Establishment of hepatocellular carcinoma patient-derived xenografts from image-guided percutaneous biopsies[J]. Sci Rep, 2019, 9(1):10546.
|
[7] |
Zhu M, Li L, Lu T, et al. Uncovering biological factors that regulate hepatocellular carcinoma growth using patient derived xenograft assays[J]. Hepatology, 2020, 72(3):1085-1101.
|
[8] |
Liu J, Chen S, Zou Z, et al. Pathological pattern of intrahepatic HBV in HCC is phenocopied by PDX-derived mice: a novel model for antiviral treatment[J]. Transl Oncol, 2019, 12(9):1138-1146.
|
[9] |
Ding Z, Shi C, Jiang L, et al. Oncogenic dependency on β-catenin in liver cancer cell lines correlates with pathway activation[J]. Oncotarget, 2017, 8(70):114526-114539.
|
[10] |
Hu B, Li H, Guo W, et al. Establishment of a hepatocellular carcinoma patient-derived xenograft platform and its application in biomarker identification[J]. Int J Cancer, 2020, 146(6):1606-1617.
|
[11] |
Yu H, Mei XP, Su PF, et al. A poor prognosis in human hepatocellular carcinoma is associated with low expression of DPP4[J]. Braz J Med Biol Res, 2020, 53(4):e9114.
|
[12] |
Hu G, Zhang Y, Ouyang K, et al. In vivo acquired sorafenib-resistant patient-derived tumor model displays alternative angiogenic pathways, multi-drug resistance and chromosome instability[J]. Oncol Lett, 2018, 16(3):3439-3446.
|
[13] |
Hu B, Cheng JW, Hu JW, et al. KPNA3 confers sorafenib resistance to advanced hepatocellular carcinoma via TWIST regulated epithelial-mesenchymal transition[J]. J Cancer, 2019, 10(17):3914-3925.
|
[14] |
Yang S, Luo C, Gu Q, et al. Activating JAK1 mutation may predict the sensitivity of JAK-STAT inhibition in hepatocellular carcinoma[J]. Oncotarget, 2016, 7(5):5461-5469.
|
[15] |
Tan L, Chen S, Wei G, et al. Sublethal heat treatment of hepatocellular carcinoma promotes intrahepatic metastasis and stemness in a VEGFR1-dependent manner[J]. Cancer Lett, 2019(460):29-40.
|
[16] |
Medema JP. Cancer stem cells: the challenges ahead[J]. Nat Cell Biol, 2013, 15(4):338-344.
|
[17] |
Zhao Q, Zhou H, Liu Q, et al. Prognostic value of the expression of cancer stem cell-related markers CD133 and CD44 in hepatocellular carcinoma: from patients to patient-derived tumor xenograft models[J]. Oncotarget, 2016, 7(30):47431-47443.
|
[18] |
Wu CX, Wang XQ, Chok SH, et al. Blocking CDK1/PDK1/beta-catenin signaling by CDK1 inhibitor RO3306 increased the efficacy of sorafenib treatment by targeting cancer stem cells in a preclinical model of hepatocellular carcinoma[J]. Theranostics, 2018, 8(14): 3737-3750.
|
[19] |
Cucarull B, Tutusaus A, Subías M, et al. Regorafenib alteration of the BCL-xL/MCL-1 ratio provides a therapeutic opportunity for BH3-mimetics in hepatocellular carcinoma models[J]. Cancers, 2020, 12(2):332.
|
[20] |
Jiang Z, Jiang X, Chen S, et al. Anti-GPC3-CAR T cells suppress the growth of tumor cells in patient-derived xenografts of hepatocellular carcinoma[J]. Front Immunol, 2017(7):690.
|
[21] |
Li X, Su Y, Sun B, et al. An artificially designed interfering lncRNA expressed by oncolytic adenovirus competitively consumes oncomiRs to exert antitumor efficacy in hepatocellular carcinoma[J]. Mol Cancer Ther, 2016, 15(7):1436-1451.
|
[22] |
Yang CY, Wang L, Sun X, et al. SHR-A1403, a novel c-Met antibody-drug conjugate, exerts encouraging anti-tumor activity in c-Met-overexpressing models[J]. Acta Pharmacol Sin, 2019, 40(7): 971-979.
|
[23] |
Wang H, Zhou L, Xie K, et al. Polylactide-tethered prodrugs in polymeric nanoparticles as reliable nanomedicines for the efficient eradication of patient-derived hepatocellular carcinoma[J]. Theranostics, 2018, 8(14):3949-3963.
|
[24] |
Lv H, Wang C, Fang T, et al. Vitamin C preferentially kills cancer stem cells in hepatocellular carcinoma via SVCT-2[J]. NPJ Precis Oncol, 2018, 2(1):1.
|
[25] |
Zhang C, Zhao Y, Zhao N, et al. NIRF optical/PET dual-modal imaging of hepatocellular carcinoma using heptamethine carbocyanine dye[J]. Contrast Media Mol Imaging, 2018:4979746.
|
[26] |
Zhang C, Zhao Y, Zhang H, et al. The application of heptamethine cyanine dye DZ-1 and indocyanine green for imaging and targeting in xenograft models of hepatocellular carcinoma[J]. Int J Mol Sci, 2017, 18(6):1332.
|
[27] |
Zhang Y, Tang ET, Du Z. Detection of MET gene copy number in cancer samples using the droplet digital PCR method[J]. PLoS One, 2016, 11(1): e0146784.
|
[28] |
Rongvaux A, Willinger T, Martinek J, et al. Development and function of human innate immune cells in a humanized mouse model[J]. Nat Biotechnol, 2014, 32(4): 364-372.
|
[29] |
Chen K, Wu Z, Zhao H, et al. XCL1/glypican-3 fusion gene immunization generates potent antitumor cellular immunity and enhances anti-PD-1 efficacy[J]. Cancer Immunol Res, 2020, 8(1):81-93.
|
[30] |
Byrne AT, Alférez DG, Amant F, et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts[J]. Nat Rev Cancer, 2017, 17(4):254-268.
|
[31] |
Cheung PF, Yip CW, Ng LW, et al. Comprehensive characterization of the patient-derived xenograft and the paralleled primary hepatocellular carcinoma cell line[J]. Cancer Cell Int, 2016(16):41.
|
[32] |
Jung HR, Kang HM, Ryu JW, et al. Cell spheroids with enhanced aggressiveness to mimic human liver cancer in vitro and in vivo[J]. Sci Rep, 2017, 7(1):10499.
|
[33] |
Fong ELS, Toh TB, Lin QXX, et al. Generation of matched patient-derived xenograft in vitro-in vivo models using 3D macroporous hydrogels for the study of liver cancer[J]. Biomaterials, 2018(159): 229-240.
|
[34] |
DeRose YS, Wang G, Lin YC, et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes[J]. Nat Med, 2011, 17(11):1514-1520.
|
[35] |
Ben-David U, Ha G, Tseng YY, et al. Patient-derived xenografts undergo mouse-specific tumor evolution[J]. Nat Genet, 2017, 49(11): 1567-1575.
|