[1] |
Kaissis G, Braren R. Pancreatic cancer detection and characterization-state of the art cross-sectional imaging and imaging data analysis[J]. Transl Gastroenterol Hepatol, 2019(4):35.
|
[2] |
Scheufele F, Hartmann D, Friess H. Treatment of pancreatic cancer-neoadjuvant treatment in borderline resectable/locally advanced pancreatic cancer[J]. Transl Gastroenterol Hepatol, 2019(4):32.
|
[3] |
Furuse J. Treatments for pancreatic cancer with oligometastasis[J]. Gan To Kagaku Ryoho, 2017, 44(10):827-830.
|
[4] |
Liang H, Yu T, Han Y, et al. LncRNA PTAR promotes EMT and invasion-metastasis in serous ovarian cancer by competitively binding miR-101-3p to regulate ZEB1 expression[J]. Mol Cancer, 2018, 17(1):119.
|
[5] |
Ding XM. MicroRNAs: regulators of cancer metastasis and epithelial-mesenchymal transition (EMT)[J]. Chin J Cancer, 2014, 33(3):140-147.
|
[6] |
Chen L, Gibbons DL, Goswami S, et al. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression[J]. Nat Commun, 2014(5): 5241.
|
[7] |
Chen J, Wang L, Matyunina LV, et al. Overexpression of miR-429 induces mesenchymal-to-epithelial transition (MET) in metastatic ovarian cancer cells[J]. Gynecol Oncol, 2011, 121(1):200-205.
|
[8] |
Kleeff J, Korc M, Apte M, et al. Pancreatic cancer[J]. Nat Rev Dis Primers, 2016(2):16022.
|
[9] |
Velez-Serrano JF, Velez-Serrano D, Hernandez-Barrera V, et al. Prediction of in-hospital mortality after pancreatic resection in pancreatic cancer patients: a boosting approach via a population-based study using health administrative data[J]. PLoS One, 2017, 12(6):e0178757.
|
[10] |
Miyazaki M, Yoshitomi H, Takano S, et al. Combined hepatic arterial resection in pancreatic resections for locally advanced pancreatic cancer[J]. Langenbecks Arch Surg, 2017, 402(3):447-456.
|
[11] |
Brooks J, Fleischmann-Mundt B, Woller N, et al. Perioperative, spatiotemporally coordinated activation of T and NK cells prevents recurrence of pancreatic cancer[J]. Cancer Res, 2018, 78(2):475-488.
|
[12] |
Ambe CM, Nguyen P, Centeno BA, et al. Multimodality management of "borderline besectable" pancreatic neuroendocrine tumors: report of a single-institution experience[J]. Cancer Control, 2017, 24(5): 1073274817729076.
|
[13] |
Shi H, Li H, Zhen T, et al. hsa_circ_001653 implicates in the development of pancreatic ductal adenocarcinoma by regulating microRNA-377-mediated HOXC6 axis[J]. Mol Ther Nucleic Acids, 2020(20):252-264.
|
[14] |
Oto J, Navarro S, Larsen AC, et al. MicroRNAs and neutrophil activation markers predict venous thrombosis in pancreatic ductal adenocarcinoma and distal extrahepatic cholangiocarcinoma[J]. Int J Mol Sci, 2020, 21(3): 840.
|
[15] |
Fesler A, Ju J. Development of microRNA-based therapy for pancreatic cancer[J]. J Pancreatol, 2019, 2(4):147-151.
|
[16] |
Wei H, Hu J, Pu J, et al. Long noncoding RNA HAGLROS promotes cell proliferation, inhibits apoptosis and enhances autophagy via regulating miR-5095/ATG12 axis in hepatocellular carcinoma cells[J]. Int Immunopharmacol, 2019(73):72-80.
|
[17] |
Qiu M, Li T, Wang B, et al. miR-146a-5p regulated cell proliferation and apoptosis by targeting SMAD3 and SMAD4[J]. Protein Pept Lett, 2020, 27(5):411-418.
|
[18] |
Chen HS, Lu AQ, Yang PY, et al. MicroRNA-28-5p regulates glioma cell proliferation, invasion and migration by targeting SphK1[J]. Eur Rev Med Pharmacol Sci, 2019, 23(15):6621-6628.
|
[19] |
Xiong Y, Wang Y, Wang L, et al. MicroRNA-30b targets snail to impede epithelial-mesenchymal transition in pancreatic cancer stem cells[J]. J Cancer, 2018, 9(12):2147-2159.
|
[20] |
Peng L, Liu Z, Xiao J, et al. MicroRNA-148a suppresses epithelial-mesenchymal transition and invasion of pancreatic cancer cells by targeting Wnt10b and inhibiting the Wnt/beta-catenin signaling pathway[J]. Oncol Rep, 2017, 38(1):301-308.
|
[21] |
Stroese AJ, Ullerich H, Koehler G, et al. Circulating microRNA-99 family as liquid biopsy marker in pancreatic adenocarcinoma[J]. J Cancer Res Clin Oncol, 2018, 144(12):2377-2390.
|
[22] |
Su Z, Jiang G, Chen J, et al. MicroRNA-429 inhibits cancer cell proliferation and migration by targeting AKT1 in renal cell carcinoma[J]. Mol Clin Oncol, 2020, 12(1):75-80.
|
[23] |
Liu D, Xia P, Diao D, et al. MiRNA-429 suppresses the growth of gastric cancer cells in vitro[J]. J Biomed Res, 2012, 26(5):389-393.
|
[24] |
Mo JS, Han SH, Yun KJ, et al. MicroRNA 429 regulates the expression of CHMP5 in the inflammatory colitis and colorectal cancer cells[J]. Inflamm Res, 2018, 67(11/12):985-996.
|
[25] |
Yin C, Lin X, Wang Y, et al. FAM83D promotes epithelial-mesenchymal transition, invasion and cisplatin resistance through regulating the AKT/mTOR pathway in non-small-cell lung cancer[J]. Cell Oncol, 2020, 43(3):395-407.
|
[26] |
Saberianpour S, Rezaie Nezhad Zamani A, Karimi A, et al. Hollow alginate-poly-L-lysine-alginate microspheres promoted an epithelial-mesenchymal transition in human colon adenocarcinoma cells[J]. Adv Pharm Bull, 2020, 10(1):141-145.
|
[27] |
Lin L, Li Y, Liu M, et al. The Interleukin-33/ST2 axis promotes glioma mesenchymal transition, stemness and TMZ resistance via JNK activation[J]. Aging, 2020, 12(2):1685-1703.
|
[28] |
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition[J]. Nat Rev Mol Cell Biol, 2014, 15(3):178-196.
|