[1] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015[J]. CA Cancer J Clin, 2015, 65(1):5-29.
|
[2] |
中华人民共和国国家卫生健康委员会. 原发性肝癌诊疗指南(2022年版)[J/OL]. 肿瘤综合治疗电子杂志, 2022, 8(2):16-53.
|
[3] |
Chen S, Cao Q, Wen W, et al. Targeted therapy for hepatocellular carcinoma: challenges and opportunities[J]. Cancer Lett, 2019, 460:1-9.
|
[4] |
Kotha RR, Luthria DL. Curcumin: biological, pharmaceutical, nutraceutical, and analytical aspects[J]. Molecules, 2019, 24(16):2930.
|
[5] |
Marquardt JU, Gomez-Quiroz L, Arreguin Camacho LO, et al. Curcumin effectively inhibits oncogenic NF-κB signaling and restrains stemness features in liver cancer[J]. J Hepatol, 2015, 63(3):661-669.
|
[6] |
Zhou C, Hu C, Wang B, et al. Curcumin suppresses cell proliferation, migration, and invasion through modulating miR-21-5p/SOX6 axis in hepatocellular carcinoma[J]. Cancer Biother Radiopharm, 2020,DOI: 10.1089/cbr.2020.3734[Epub ahead of print].
|
[7] |
Man S, Yao J, Lv P, et al. Curcumin-enhanced antitumor effects of sorafenib via regulating the metabolism and tumor microenvironment[J]. Food Funct, 2020, 11(7):6422-6432.
|
[8] |
Rumgay H, Arnold M, Ferlay J, et al. Global burden of primary liver cancer in 2020 and predictions to 2040[J]. J Hepatol, 2022, 77(6):1598-1606.
|
[9] |
Zhu YJ, Zheng B, Wang HY, et al. New knowledge of the mechanisms of sorafenib resistance in liver cancer[J]. Acta Pharmacol Sin, 2017, 38(5):614-622.
|
[10] |
Blivet-van Eggelpoël MJ, Chettouh H, Fartoux L, et al. Epidermal growth factor receptor and HER-3 restrict cell response to sorafenib in hepatocellular carcinoma cells[J]. J Hepatol, 2012, 57(1):108-115.
|
[11] |
Liu Z, Lin Y, Zhang J, et al. Molecular targeted and immune checkpoint therapy for advanced hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2019, 38(1):447.
|
[12] |
Ma XL, Hu B, Tang WG, et al. CD73 sustained cancer-stem-cell traits by promoting SOX9 expression and stability in hepatocellular carcinoma[J]. J Hematol Oncol, 2020, 13(1):11.
|
[13] |
Machado IF, Miranda RG, Dorta DJ, et al. Targeting oxidative stress with polyphenols to fight liver diseases[J]. Antioxidants, 2023, 12(6):1212.
|
[14] |
Wang Z, Li Z, Ye Y, et al. Oxidative stress and liver cancer: etiology and therapeutic targets[J]. Oxid Med Cell Longev, 2016: 7891574.
|
[15] |
Tian N, Shangguan W, Zhou Z, et al. Lin28b is involved in curcumin-reversed paclitaxel chemoresistance and associated with poor prognosis in hepatocellular carcinoma[J]. J Cancer, 2019, 10(24):6074-6087.
|
[16] |
Bortel N, Armeanu-Ebinger S, Schmid E, et al. Effects of curcumin in pediatric epithelial liver tumors: inhibition of tumor growth and alpha-fetoprotein in vitro and in vivo involving the NFkappaB- and the beta-catenin pathways[J]. Oncotarget, 2015, 6(38):40680-40691.
|
[17] |
Wang M, Yu F, Chen X, et al. The underlying mechanisms of noncoding RNAs in the chemoresistance of hepatocellular carcinoma[J]. Mol Ther Nucleic Acids, 2020, 21:13-27.
|
[18] |
Zhou M, Zhang G, Hu J, et al. Rutin attenuates sorafenib-induced chemoresistance and autophagy in hepatocellular carcinoma by regulating BANCR/miRNA-590-5P/OLR1 axis[J]. Int J Biol Sci, 2021, 17(13):3595-3607.
|
[19] |
Shu G, Su H, Wang Z, et al. LINC00680 enhances hepatocellular carcinoma stemness behavior and chemoresistance by sponging miR-568 to upregulate AKT3[J]. J Exp Clin Cancer Res, 2021, 40(1):45.
|
[20] |
Liu S, Bu X, Kan A, et al. SP1-induced lncRNA DUBR promotes stemness and oxaliplatin resistance of hepatocellular carcinoma via E2F1-CIP2A feedback[J]. Cancer Lett, 2022, 528:16-30.
|