[1] |
Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J]. Ca Cancer J Clin, 2015, 65(2):87-108.
|
[2] |
Chen L, Yan HX, Yang W, et al. The role of microRNA expression pattern in human intrahepatic cholangiocarcinoma[J]. J Hepatol, 2009, 50(2):358-369.
|
[3] |
Tabrizian P, Jibara G, Hechtman JF, et al. Outcomes following resection of intrahepatic cholangiocarcinoma[J]. HPB, 2015, 17(4): 344-351.
|
[4] |
朱应钦,王骏成,陈锦滨,等.肝内胆管细胞癌与混合性肝癌临床特点对比分析[J/CD].中华肝脏外科手术学电子杂志,2018, 7(5):375-379.
|
[5] |
Lederer A, Herrmann P, Seehofer D, et al. Metastasis-associated in colon cancer 1 is an independent prognostic biomarker for survival in Klatskin tumor patients[J]. Hepatology, 2015, 62(3):841-850.
|
[6] |
Karakatsanis A, Papaconstantinou I, Gazouli M, et al. Expression of microRNAs, miR-21, miR-31, miR-122, miR-145, miR-146a, miR-200c, miR-221, miR-222, and miR-223 in patients with hepatocellular carcinoma or intrahepatic cholangiocarcinoma and its prognostic significance[J]. Mol Carcinog, 2013, 52(4):297-303.
|
[7] |
Ohlsson B, Nilsson J, Stenram U, et al. Percutaneous fine-needle aspiration cytology in the diagnosis and management of liver tumours[J]. Br J Surg, 2002, 89(6):757-762.
|
[8] |
Li Z, Shen J, Chan MT, et al. The role of microRNAs in intrahepatic cholangiocarcinoma [J]. J Cell Mol Med, 2017, 21(1): 177-184.
|
[9] |
Fabris L, Ceder Y, Chinnaiyan AM, et al. The potential of microRNAs as prostate cancer biomarkers[J]. Eur Urol, 2016, 70(2): 312-322.
|
[10] |
Nassar FJ, Nasr R, Talhouk R. MicroRNAs as biomarkers for early breast cancer diagnosis, prognosis and therapy prediction[J]. Pharmacol Ther, 2017(172):34-49.
|
[11] |
Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer[J]. Annu Rev Pathol, 2014(9):287-314.
|
[12] |
Bae HJ, Jung KH, Eun JW, et al. MicroRNA-221 governs tumor suppressor HDAC6 to potentiate malignant progression of liver cancer[J]. J Hepatol, 2015, 63(2):408-419.
|
[13] |
Zhang MY, Li SH, Huang GL, et al. Identification of a novel microRNA signature associated with intrahepatic cholangiocarcinoma (ICC) patient prognosis[J]. BMC Cancer, 2015(15): 64.
|
[14] |
Saha SK, Gordan JD, Kleinstiver BP, et al. Isocitrate dehydrogenase mutations confer dasatinib hypersensitivity and SRC dependence in intrahepatic cholangiocarcinoma[J]. Cancer Discov, 2016, 6(7):727-739.
|
[15] |
Cong WM, Wu MC. New insights into molecular diagnostic pathology of primary liver cancer: advances and challenges[J]. Cancer Lett, 2015, 368(1):14-19.
|
[16] |
Sapisochin G, de Lope CR, Gastaca M, et al. Intrahepatic cholangiocarcinoma or mixed hepatocellular-cholangiocarcinoma in patients undergoing liver transplantation: a Spanish matched cohort multicenter study[J]. Ann Surg, 2014, 259(5):944-952.
|
[17] |
Correa-Gallego C, Maddalo D, Doussot A, et al. Circulating plasma levels of microRNA-21 and microRNA-221 are potential diagnostic markers for primary intrahepatic cholangiocarcinoma[J]. PLoS One, 2016, 11(9):e0163699.
|
[18] |
Lin ZY, Liang ZX, Zhuang PL, et al. Intrahepatic cholangiocarcinoma prognostic determination using pre-operative serum C-reactive protein levels[J]. BMC Cancer, 2016, 16(1):792.
|
[19] |
Lim JS, Yang JH, Chun BY, et al. Is serum gamma-glutamyltransferase inversely associated with serum antioxidants as a marker of oxidative stress?[J]. Free Radic Biol Med, 2004, 37(7): 1018-1023.
|
[20] |
Falkenberg N, Anastasov N, Rappl K, et al. MiR-221/-222 differentiate prognostic groups in advanced breast cancers and influence cell invasion[J]. Br J Cancer, 2013, 109(10):2714-2723.
|
[21] |
Hussein S, Mosaad H, Rashed HE, et al. Up-regulated miR-221 expression as a molecular diagnostic marker in laryngeal squamous cell carcinoma and its correlation with Apaf-1 expression[J]. Cancer Biomark, 2017, 19(3):279-287.
|
[22] |
Zhou YL, Liu C, Dai XX, et al. Overexpression of miR-221 is associated with aggressive clinicopathologic characteristics and the BRAF mutation in papillary thyroid carcinomas[J]. Med Oncol, 2012, 29(5):3360-3366.
|
[23] |
Wei WF, Zhou CF, Wu XG, et al. MicroRNA-221-3p, a TWIST2 target, promotes cervical cancer metastasis by directly targeting THBS2[J]. Cell Death Dis, 2017, 8(12):3220.
|
[24] |
Jutric Z, Johnston WC, Hoen HM, et al. Impact of lymph node status in patients with intrahepatic cholangiocarcinoma treated by major hepatectomy: a review of the National Cancer Database[J]. HPB, 2016, 18(1):79-87.
|
[25] |
Hu C, Huang F, Deng G, et al. miR-31 promotes oncogenesis in intrahepatic cholangiocarcinoma cells via the direct suppression of RASA1[J]. Exp Ther Med, 2013, 6(5):1265-1270.
|
[26] |
Wang LJ, He CC, Sui X, et al. MiR-21 promotes intrahepatic cholangiocarcinoma proliferation and growth in vitro and in vivo by targeting PTPN14 and PTEN[J]. Oncotarget, 2015, 6(8):5932-5946.
|
[27] |
Liu H, Chang JK, Hou JQ, et al. Inhibition of miR-221 influences bladder cancer cell proliferation and apoptosis[J]. Eur Rev Med Pharmacol Sci, 2017, 21(14):3193-3199.
|
[28] |
Wang M, Zhao C, Shi H et al. Deregulated microRNAs in gastric cancer tissue-derived mesenchymal stem cells: novel biomarkers anda mechanism for gastric cancer[J]. Br J Cancer, 2014, 110(5):1199-1210.
|
[29] |
Jang JY, Kim YG, Nam SJ, et al. Targeting adenine nucleotide translocase-2 (ANT2) to overcome resistance to epidermal growth factor receptor tyrosine kinase inhibitor in non-small cell lung cancer[J]. Mol Cancer Ther, 2016, 15(6):1387-1396.
|
[30] |
Cheng CW, Yu JC, Hsieh YH, et al. Increased cellular levels of microRNA-9 and microRNA-221 correlate with cancer stemness and predict poor outcome in human breast cancer[J]. Cell Physiol Biochem, 2018, 48(5):2205-2218.
|