切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2014, Vol. 03 ›› Issue (02) : 112 -116. doi: 10.3877/cma.j.issn.2095-3232.2014.02.012

所属专题: 文献

基础研究

CD36在小鼠非酒精性脂肪性肝病形成中的意义
尉秀清1,(), 林颖1, 何卉欣1, 蒋梦萍1, 吴斌1   
  1. 1. 510630 广州,中山大学附属第三医院消化内科
  • 收稿日期:2014-01-15 出版日期:2014-04-10
  • 通信作者: 尉秀清
  • 基金资助:
    国家自然科学基金(81272640); 广东省科技计划项目(2010B031200008,2012B031800043)

Role of CD36 in the formation of non-alcoholic fatty liver disease in mice

Xiuqing Wei1,(), Ying Lin1, Huixin He1, Mengping Jiang1, Bin Wu1   

  1. 1. Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
  • Received:2014-01-15 Published:2014-04-10
  • Corresponding author: Xiuqing Wei
  • About author:
    Corresponding author: Wei Xiuqing, Email:
引用本文:

尉秀清, 林颖, 何卉欣, 蒋梦萍, 吴斌. CD36在小鼠非酒精性脂肪性肝病形成中的意义[J]. 中华肝脏外科手术学电子杂志, 2014, 03(02): 112-116.

Xiuqing Wei, Ying Lin, Huixin He, Mengping Jiang, Bin Wu. Role of CD36 in the formation of non-alcoholic fatty liver disease in mice[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2014, 03(02): 112-116.

目的

探讨分化群(CD)36在小鼠非酒精性脂肪性肝病(NAFLD)形成中的意义。

方法

SPF级8周龄健康雄性C57BL/6J小鼠20只,平均体重为(18.8±2.3)g,按照随机数字表法将小鼠随机分成NAFLD组和对照组,每组各10只。NAFLD组给予高脂饲料喂养10周,对照组给予正常饮食10周。处理结束后脱颈处死小鼠,留取心脏血和肝组织标本。观察两组小鼠血清ALT、总胆固醇(TC)、甘油三酯(TG)水平,肝组织TC、TG水平,肝组织病理学改变,肝组织CD36蛋白表达及其信使核糖核酸(mRNA)含量。两组实验数据的比较采用t检验。

结果

NAFLD组小鼠血清ALT水平为(49±6)U/L,对照组为(45±7)U/L,两组比较差异无统计学意义(t=1.70,P>0.05)。NAFLD组小鼠血清TC、TG水平分别为(4.42±0.09)、(0.45±0.04)mmol/L,对照组分别为(2.42±0.05)、(0.32±0.03)mmol/L,NAFLD组小鼠血清TC、TG水平明显高于对照组(t=21.90,8.22;P<0.05)。NAFLD组小鼠肝组织TC、TG水平分别为(1.18±0.09)、(1.75±0.08)mmol/L,对照组分别为(0.55±0.06)、(1.28±0.06)mmol/L,NAFLD组小鼠肝组织TC、TG水平明显高于对照组(t=18.42,14.86;P<0.05)。NAFLD组肝细胞明显脂肪变性、气球样变。对照组肝细胞形态、大小正常。NAFLD组小鼠肝组织CD36蛋白表达明显强于对照组。NAFLD组小鼠肝组织CD36 mRNA含量为2.75±0.26,对照组为1.00±0.08,NAFLD组小鼠肝组织CD36 mRNA含量明显高于对照组(t=21.16,P<0.05)。

结论

CD36可能参与小鼠NAFLD形成,降低CD36表达可能成为防治NAFLD的新靶点。

Objective

To investigate the role of cluster of differentiation (CD) 36 in the formation of non-alcoholic fatty liver disease (NAFLD) in mice.

Methods

Twenty specific pathogen free healthy male C57BL/6J mice [8 weeks old, average weight: (18.8±2.3)g] were randomly divided into NAFLD group and control group according to the random number table method with 10 mice in each group. Mice in NAFLD group was fed with high-fat diet for 10 weeks, while mice in control group was fed with normal diet for 10 weeks. The mice were sacrificed after the processing, and samples of cardiac blood and liver tissue were collected. The levels of serum alanine transaminase (ALT), total cholesterol (TC) and triglyceride (TG), levels of TC and TG in liver tissue, pathological changes of liver tissue, expression of CD36 protein and content of its messenger ribonucleic acid (mRNA) in liver tissue of 2 groups were observed. Experimental data of 2 groups were compared using t test.

Results

The level of serum ALT was (49±6)U/L in NAFLD group and (45±7)U/L in control group, where no significant difference was obsersed (t=1.70, P>0.05). The levels of serum TC and TG were (4.42±0.09), (0.45±0.04)mmol/L in NAFLD group and (2.42±0.05), (0.32±0.03)mmol/L in control group respectively. The levels of serum TC and TG in NAFLD group were significantly higher than those in control group (t=21.90, 8.22; P<0.05). The levels of TC and TG in liver tissue were (1.18±0.09), (1.75±0.08)mmol/L in NAFLD group and (0.55±0.06), (1.28±0.06)mmol/L in control group respectively. The levels of TC and TG in liver tissue in NAFLD group were significantly higher than those in control group (t=18.42, 14.86; P<0.05). Obviously fatty degeneration and ballooning degeneration were observed in hepatocytes of NAFLD group, while hepatocytes were normal in morphology and size in control group. The expression of CD36 protein in liver tissue in NAFLD group was significantly stronger than that in control group. The content of CD36 mRNA in liver tissue was 2.75±0.26 in NAFLD group and 1.00±0.08 in control group. The content of CD36 mRNA in liver tissue in NAFLD group was significantly higher than that in control group (t=21.16, P<0.05).

Conclusions

CD36 may play a role in the formation of NAFLD in mice. To decrease its expression can be a new target for the prophylaxis and treatment of NAFLD.

图1 两组小鼠饲养10周后肝组织病理学改变(HE ×200)
图2 两组小鼠肝组织CD36蛋白表达的电泳图
[1]
陈规划,汪根树.肝移植受者生存质量:现状、问题与对策[J].器官移植, 2013, 4(1): 1-5.
[2]
Chabowski A,Żendzian-Piotrowska M,Konstantynowicz K, et al. Fatty acid transporters involved in the palmitate and oleate induced insulin resistance in primary rat hepatocytes[J]. Acta Physiol, 2013, 207(2): 346-357.
[3]
Bonen A,Campbell SE,Benton CR, et al. Regulation of fatty acid transport by fatty acid translocase/CD36[J]. Proc Nutr Soc, 2004, 63(2): 245-249.
[4]
Xu S,Jay A,Brunaldi K, et al. CD36 enhances fatty acid uptake by increasing the rate of intracellular esterification but not transport across the plasma membrane[J]. Biochemistry, 2013, 52(41): 7254-7261.
[5]
Abumrad N,Harmon C,Ibrahimi A. Membrane transport of long-chain fatty acids: evidence for a facilitated process[J]. J Lipid Res, 1998, 39(12): 2309-2318.
[6]
Harmon CM,Abumrad NA. Binding of sulfosuccinimidyl fatty acids to adipocyte membrane proteins: isolation and amino-terminal sequence of an 88-kD protein implicated in transport of long-chain fatty acids[J]. J Membr Biol, 1993, 133(1): 43-49.
[7]
Krammer J,Digel M,Ehehalt F, et al. Overexpression of CD36 and acyl-CoA synthetases FATP2, FATP4 and ACSL1 increases fatty acid uptake in human hepatoma cells[J]. Int J Med Sci, 2011, 8(7): 599-614.
[8]
Buqué X,Cano A,Miquilena-Colina ME, et al. High insulin levels are required for FAT/CD36 plasma membrane translocation and enhanced fatty acid uptake in obese Zucker rat hepatocytes[J]. Am J Physiol Endocrinol Metab, 2012, 303(4): E504-E514.
[9]
Petta S,Handberg A,Marchesini G, et al. High sCD36 plasma level is associated with steatosis and its severity in patients with genotype 1 chronic hepatitis C[J]. J Viral Hepat, 2013, 20(3): 174-182.
[10]
García-Monzón C,Lo Iacono O,Crespo J, et al. Increased soluble CD36 is linked to advanced steatosis in nonalcoholic fatty liver disease[J]. Eur J Clin Invest, 2014, 44(1): 65-73.
[11]
Nishikawa S,Sugimoto J,Okada M, et al. Gene expression in livers of BALB/C and C57BL/6J mice fed a high-fat diet[J]. Toxicol Pathol, 2012, 40(1): 71-82.
[12]
Satoh H,Ide N,Kagawa Y, et al. Hepatic steatosis with relation to increased expression of peroxisome proliferator-activated receptor-γ in insulin resistant mice[J]. Biol Pharm Bull, 2013, 36(4): 616-623.
[13]
Ma Y,Huang Y,Yan L, et al. Synthetic FXR agonist GW4064 prevents diet-induced hepatic steatosis and insulin resistance[J]. Pharm Res, 2013, 30(5): 1447-1457.
[14]
Guo F,Yang X,Li X, et al. Nuciferine prevents hepatic steatosis and injury induced by a high-fat diet in hamsters[J]. PLoS One, 2013, 8(5): e63770.
[15]
Trombetta A,Togliatto G,Rosso A, et al. Increase of palmitic acid concentration impairs endothelial progenitor cell and bone marrow-derived progenitor cell bioavailability: role of the STAT5/PPARγ transcriptional complex[J]. Diabetes, 2013, 62(4): 1245-1257.
[16]
Madonna R,Salerni S,Schiavone D, et al. Omega-3 fatty acids attenuate constitutive and insulin-induced CD36 expression through a suppression of PPAR α/γ activity in microvascular endothelial cells[J]. Thromb Haemost, 2011, 106(3): 500-510.
[17]
Morán-Salvador E,López-Parra M,García-Alonso V, et al. Role for PPARγ in obesity-induced hepatic steatosis as determined by hepatocyte- and macrophage-specific conditional knockouts[J]. FASEB J, 2011, 25(8): 2538-2550.
[18]
Clugston RD,Yuen JJ,Hu Y, et al. CD36-deficient mice are resistant to alcohol- and high-carbohydrate-induced hepatic steatosis[J]. J Lipid Res, 2014, 55(2): 239-246.
[1] 刘甜甜, 李明, 朱含汀, 倪涛, 彭银波, 方勇. 创缘铁过载的临床样本验证与铁过载对小鼠创面愈合的影响[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 475-481.
[2] 张星哲, 郑秉暄, 邓格, 豆猛, 石玉婷, 卫田, 郭映聪, 韩锋, 赵艳龙, 丁晨光, 田普训. 髓源性抑制细胞通过抑制炎症反应减轻小鼠肾脏缺血再灌注损伤[J]. 中华移植杂志(电子版), 2023, 17(01): 42-46.
[3] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[4] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[5] 白静怡, 黄轩, 张益权, 田颖, 陶勇. 小鼠干眼模型构建及其角膜特征检测的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 12-17.
[6] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[7] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[8] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
[9] 李运林, 娄冬华. 滨海县非酒精性脂肪肝发病与消退的影响因素分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 354-358.
[10] 刘立业, 赵德芳. 非酒精性脂肪肝患者血清细胞因子信号转导抑制因子3、肝X受体α水平与CT影像学特征的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 211-215.
[11] 孔凡彪, 杨建荣. 肝脏基础疾病与结直肠癌肝转移之间关系的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(07): 818-822.
[12] 梁伟, 王晓彬, 洪笑阳, 蔡明岳, 梁礼聪, 陈烨, 黄培凯, 刘铭宇, 林立腾, 朱康顺. 原位肝癌小鼠微波消融术后复发模型的构建[J]. 中华介入放射学电子杂志, 2023, 11(02): 133-139.
[13] 刘玉苓, 王婷婷, 吴高峰, 俞淑静. 健康体检人群内脏脂肪面积与新型炎症标志物的相关性研究[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 197-202.
[14] 何亚伟, 陈皖京, 宋佳宏, 于刚, 贾犇黎, 汪泳. 肥胖患者SCH、血清维生素D水平与NAFLD严重程度关系的研究[J]. 中华肥胖与代谢病电子杂志, 2023, 09(02): 95-101.
[15] 买买提·依斯热依力, 王永康, 阿巴伯克力·乌斯曼, 克力木·阿不都热依木. 基于16s rRNA测序分析小鼠高脂饮食诱导肥胖的肠道菌群结构特征[J]. 中华肥胖与代谢病电子杂志, 2023, 09(01): 12-16.
阅读次数
全文


摘要