切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2014, Vol. 03 ›› Issue (02) : 117 -123. doi: 10.3877/cma.j.issn.2095-3232.2014.02.013

所属专题: 文献

基础研究

肝硬化大鼠肝大部分切除术后肠道细菌移位机制的研究
梁健1, 潘卫东1,(), 邓浩1, 陈署贤1   
  1. 1. 510630 广州,中山大学附属第三医院肝胆外科
  • 收稿日期:2013-12-23 出版日期:2014-04-10
  • 通信作者: 潘卫东
  • 基金资助:
    国家自然科学基金(81172783)

Mechanism research on intestinal bacterial translocation in rats with liver cirrhosis after partial hepatectomy

Jian Liang1, Weidong Pan1,(), Hao Deng1, Shuxian Chen1   

  1. 1. Department of Hepatobiliary Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
  • Received:2013-12-23 Published:2014-04-10
  • Corresponding author: Weidong Pan
  • About author:
    Corresponding author: Pan Weidong, Email:
引用本文:

梁健, 潘卫东, 邓浩, 陈署贤. 肝硬化大鼠肝大部分切除术后肠道细菌移位机制的研究[J]. 中华肝脏外科手术学电子杂志, 2014, 03(02): 117-123.

Jian Liang, Weidong Pan, Hao Deng, Shuxian Chen. Mechanism research on intestinal bacterial translocation in rats with liver cirrhosis after partial hepatectomy[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2014, 03(02): 117-123.

目的

探讨肝硬化大鼠肝大部分切除术后肠道细菌移位的机制。

方法

4周龄SPF级健康雄性SD大鼠40只,平均体重(90±10) g,建立肝硬化大鼠模型后按随机数字表法随机分为假手术(SO)组和肝大部分切除术(PH)组,每组各20只。SO组仅剪断肝周围韧带后关腹;PH组行改良大鼠肝大部分切除术,切除肝左内、外叶和肝中叶,切除量约2/3。每组大鼠各取10只于术后24 h测量门静脉压力,剩余10只于术后24 h检测血浆D-乳酸、内毒素水平,肠系膜淋巴结细菌含量,小肠黏膜组织学改变,小肠组织紧密连接蛋白ZO-1、Claudin-1含量,小肠组织肿瘤坏死因子(TNF)-α、干扰素(IFN)-γ、肌球蛋白轻链激酶(MLCK)表达水平,粪便菌群变化。两组正态分布的实验数据比较采用t检验;两组小肠黏膜的Chiu's评分采用MQ25Q75)表示,比较采用秩和检验;两组率的比较采用χ2检验。

结果

SO组门静脉压力为(15.4±1.1)cmH2O(1 cmH2O=0.098 kPa),PH组为(22.9±0.7)cmH2O,PH组门静脉压力明显高于SO组(t= -11.15,P<0.05)。SO组血浆内毒素水平为(48.6±2.4)EU/ml,PH组为(52.6±2.3)EU/ml,PH组血浆内毒素水平明显高于SO组(t= -3.31,P<0.05)。PH组肠系膜淋巴结细菌含量为SO组的(162±55)%,PH组肠系膜淋巴结细菌含量较SO组明显增加(t=-2.22,P<0.05)。SO组血浆D-乳酸水平为(37.4±2.8)mg/L,PH组为(60.6±5.0)mg/L,PH组血浆D-乳酸水平明显高于SO组(t= -9.70,P<0.05)。SO组小肠黏膜的Chiu's评分中位数为1(1,2)分,PH组为4(3,4)分,PH组小肠黏膜的Chiu's评分明显高于SO组(Z= -3.52,P<0.05)。SO组小肠组织紧密连接蛋白ZO-1、Claudin-1含量分别为0.70±0.09、0.62±0.10,PH组分别为0.50±0.14、0.33±0.13,PH组小肠组织紧密连接蛋白ZO-1、Claudin-1含量明显低于SO组(t=2.78,2.98;P<0.05)。SO组小肠组织TNF-α、IFN-γ、MLCK的强阳性率分别为20%(2/10)、10%(1/10)、20%(2/10),PH组分别为50%(5/10)、40%(4/10)、70%(7/10),PH组小肠组织TNF-α、IFN-γ、MLCK的强阳性率明显高于SO组(χ2=4.87,8.37,5.01;P<0.05)。PH组粪便大肠埃希菌、类杆菌、梭杆菌、肺炎克雷伯菌、双歧杆菌含量为SO组的(288±74)%、(185±48)%、(278±82)%、(551±96)%、(43±7)%,PH组粪便中大肠埃希菌、类杆菌、梭杆菌、肺炎克雷伯菌含量明显多于SO组,而双歧杆菌含量明显少于SO组(t=2.49,3.68,2.24,5.50,-3.89;P<0.05)。

结论

肝硬化大鼠肝大部分切除术后肠道细菌移位的机制可能与肠道机械屏障和细菌屏障受损有关。术后降低门静脉压力和炎症因子水平、纠正肠道菌群失调可能为减少肠道细菌移位的有效方法。

Objective

To investigate the mechanism of intestinal bacterial translocation in rats with liver cirrhosis after partial hepatectomy.

Methods

Forty healthy spelific pathogen free male Sprague-Dawley (SD) rats [4 weeks old, average weight: (90±10)g] were randomly divided into sham operation group (SO group) and partial hepatectomy group (PH group) with 20 rats in each group after liver cirrhosis model was established. Rats in SO group underwent separation of perihepatic ligaments then the abdomen was closed. Rats in PH group underwent modified partial hepatectomy including resection of left medial lobe, lateral lobe and middle lobe. The volume of resected liver was about 2/3. Portal pressure was tested in 10 rats from each group 24 h after operation. The levels of plasma D-lactate, endotoxin, content of bacteria in mesenteric lymph nodes, histological change of small intestinal mucosa, contents of tight junction protein ZO-1 and Claudin-1 of small intestinal tissue, expressions of tumor necrosis factor (TNF)-α, interferon (IFN)- γ, myosin light chain kinase (MLCK) of small intestinal tissues, changes of fecal flora were tested in the other 10 rats of each group 24 h after operation. The experimental data with normal distribution in 2 groups were compared using t test. The Chiu's scores of small intestinal mucosa in 2 groups were expressed in M(Q25, Q75) and were compared using rank sum test. The comparison of rates in 2 groups was conducted using Chi-square test.

Results

The portal pressure in PH group [(22.9±0.7)cmH2O] (1 cmH2O=0.098 kPa) was significantly higher than that in SO group [(15.4±1.1)cmH2O] (t= -11.15, P<0.05). The level of plasma endotoxin in PH group [(52.6±2.3)EU/ml] increased obviously, compared with that in SO group [(48.6±2.4)EU/ml] (t= -3.31, P<0.05) . The content of bacteria in mesenteric lymph nodes in PH group was (162±55)% of that in SO group, which was significantly higher than that in SO group (t= -2.22, P<0.05). The level of plasma D-lactate was (60.6±5.0)mg/L in PH group, which was significantly higher than that in SO group [(37.4±2.8)mg/L] (t= -9.70, P<0.05). The median of Chiu's score of small intestinal mucosa was 4(3, 4) in PH group, which was significantly higher than that in SO group [1(1, 2)] (Z= -3.52, P<0.05). The contents of tight junction protein ZO-1 and Claudin-1 of small intestinal tissue in PH group were 0.50±0.14, 0.33±0.13 respectively, which were significantly lower than those in SO group (0.70±0.09, 0.62±0.10) (t=2.78, 2.98; P<0.05). The strong positive expression rates of TNF-α, IFN-γ, MLCK were 50%(5/10), 40%(4/10), 70%(7/10) in PH group, which were significantly higher than those in SO group [20%(2/10), 10%(1/10), 20%(2/10)] (χ2=4.87, 8.37, 5.01; P<0.05). The contents of fecal Escherichia coli, Bacteroides, Fusobacterium, Klebsiella pneumoniae, Bifidobacteria in PH group were (288±74)%, (185±48)%, (278±82)%, (551±96)%, (43±7)% of those in SO group. The contents of fecal Escherichia coli, Bacteroides, Fusobacterium, Klebsiella pneumoniae in PH group were significantly higher than those in SO group, while the content of Bifidobacteria was significantly lower (t=2.49, 3.68, 2.24, 5.50, -3.89; P<0.05).

Conclusions

The mechanism of intestinal bacterial translocation in rats with liver cirrhosis after partial hepatectomy may be associated with the damage of intestinal mechanical barrier and bacterial barrier. Reducing the portal pressure and level of inflammatory factor, and correcting the intestinal bacterial imbalance may be effective methods for reducing intestinal bacterial translocation.

图1 两组大鼠小肠组织肿瘤坏死因子-α表达情况(免疫组化法×200)
图2 两组大鼠小肠组织干扰素-γ表达情况(免疫组化法×200)
图3 两组大鼠小肠组织肌球蛋白轻链激酶表达情况(免疫组化法×200)
[1]
Capussotti L,Viganò L,Giuliante F, et a1.Liver dysfunction and sepsis determine operative mortality after liver resection[J]. Br J Surg, 2009, 96(1): 88-94.
[2]
Chen WZ,Hu KP,Xu RY, et al. Beneficial effect of splenic artery ligation on bacterial translocation after major liver resection in rats[J]. Dig Liver Dis, 2013, 45(3): 233-237.
[3]
Ekberg H,Tranberg KG,Andersson R, et al. Major liver resection: perioperative course and management[J]. Surgery, 1986, 100(1): 1-8.
[4]
Kamada N,Calne RY. A surgical experience with five hundred thirty liver transplants in the rat[J]. Surgery, 1983, 93(1 Pt 1): 64-69.
[5]
Chiu CJ,McArdle AH,Brown R, et al. Intestinal mucosal lesion in low-flow states: IA morphological, hemodynamic, and metabolic reappraisal[J]. . Arch Surg, 1970, 101(4): 478-483.
[6]
Nakao T,Kurita N,Komatsu M, et al. Irinotecan injures tight junction and causes bacterial translocation in rat[J]. J Surg Res, 2012, 173(2): 341-347.
[7]
Benten D,Wiest R. Gut microbiome and intestinal barrier failure: the "Achilles heel" in hepatology?[J]. J Hepatol, 2012, 56(6): 1221-1223.
[8]
Wang XD,Pärsson H,Andersson R, et al. Bacterial translocation, intestinal ultrastructure and cell membrane permeability early after major liver resection in the rat[J]. Br J Surg, 1994, 81(4): 579-584.
[9]
Watson AJ,Hughes KR. TNF-α-induced intestinal epithelial cell shedding: implications for intestinal barrier function[J]. Ann N Y Acad Sci, 2012(1258): 1-8.
[10]
Van Itallie CM,Anderson JM. Claudins and epithelial paracellular transport[J]. Annu Rev Physiol, 2006(68): 403-29.
[11]
Fasano A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer[J]. Physiol Rev, 2011, 91(1): 151-175.
[12]
Kiesslich R,Duckworth CA,Moussata D, et al. Local barrier dysfunction identified by confocal laser endomicroscopy predicts relapse in inflammatory bowel disease[J]. Gut, 2012, 61(8): 1146-1153.
[13]
Utech M,Mennigen R,Bruewer M. Endocytosis and recycling of tight junction proteins in inflammation[J]. J Biomed Biotechnol, 2010: 484987.
[14]
Campbell KJ,Rocha S,Perkins ND. Active repression of antiapoptotic gene expression by RelA(p65) NF-kappa B[J]. Mol Cell, 2004, 13(6): 853-865.
[15]
Catalioto RM,Maggi CA,Giuliani S. Intestinal epithelial barrier dysfunction in disease and possible therapeutical interventions[J]. Curr Med Chem, 2011, 18(3): 398-426.
[16]
Bruewer M,Utech M,Ivanov AI, et al. Interferon-gamma induces internalization of epithelial tight junction proteins via a macropinocytosis-like process[J]. FASEB J, 2005, 19(8): 923-933.
[17]
Lupp C,Robertson ML,Wickham ME, et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae[J]. Cell Host Microbe, 2007, 2(2): 119-129.
[18]
Corridoni D,Pastorelli L,Mattioli B, et al. Probiotic bacteria regulate intestinal epithelial permeability in experimental ileitis by a TNF-dependent mechanism[J]. PLoS One, 2012, 7(7): e42067.
[19]
Jones SE,Versalovic J. Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors[J]. BMC Microbiol, 2009(9): 35.
[20]
Gaboriau-Routhiau V,Rakotobe S,Lécuyer E, et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses[J]. Immunity, 2009, 31(4): 677-689.
[21]
Maslowski KM,Vieira AT,Ng A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43[J]. Nature, 2009, 461(7268): 1282-1286.
[22]
Simonovic I,Rosenberg J,Koutsouris A, et al. Enteropathogenic Escherichia coli dephosphorylates and dissociates occludin from intestinal epithelial tight junctions[J]. Cell Microbiol, 2000, 2(4): 305-315.
[23]
Barber AE,Jones WG 2nd,Minei JP, et al. Bacterial overgrowth and intestinal atrophy in the etiology of gut barrier failure in the rat[J]. Am J Surg, 1991, 161(2): 300-304.
[1] 涂家金, 廖武强, 刘金晶, 涂志鹏, 毛远桂. 严重烧伤患者鲍曼不动杆菌血流感染的危险因素及预后分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 491-497.
[2] 李凤仪, 李若凡, 高旭, 张超凡. 目标导向液体干预对老年胃肠道肿瘤患者术后血流动力学、胃肠功能恢复的影响[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 29-32.
[3] 王春荣, 陈姜, 喻晨. 循Glisson蒂鞘外解剖、Laennec膜入路腹腔镜解剖性左半肝切除术临床应用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 37-40.
[4] 李建美, 邓静娟, 杨倩. 两种术式联合治疗肝癌合并肝硬化门静脉高压的安全性及随访评价[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 41-44.
[5] 吴方园, 孙霞, 林昌锋, 张震生. HBV相关肝硬化合并急性上消化道出血的危险因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 45-47.
[6] 钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.
[7] 杨瑞洲, 李国栋, 吴向阳. 腹股沟疝术后感染的治疗方法探讨[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 715-719.
[8] 徐金林, 陈征. 抗菌药物临床应用监测对腹股沟疝修补术预防用药及感染的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 720-723.
[9] 李静如, 王江玲, 吴向阳. 简易负压引流在腹股沟疝术后浅部感染中的疗效分析[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 745-749.
[10] 赵立力, 王魁向, 张小冲, 李志远. 血沉与C-反应蛋白比值在假体周围感染中的诊断价值分析[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 351-355.
[11] 李达, 张大涯, 陈润祥, 张晓冬, 黄士美, 陈晨, 曾凡, 陈世锔, 白飞虎. 海南省东方市幽门螺杆菌感染现状的调查与相关危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 858-864.
[12] 卓徐鹏, 刘颖, 任菁菁. 感染性疾病与老年人低蛋白血症的相关性研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 896-899.
[13] 李静静, 翟蕾, 赵海平, 郑波. 多囊肾合并囊肿的多重耐药菌感染一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 920-923.
[14] 李琪, 黄钟莹, 袁平, 关振鹏. 基于某三级医院的ICU多重耐药菌医院感染影响因素的分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 777-782.
[15] 孔凡彪, 杨建荣. 肝脏基础疾病与结直肠癌肝转移之间关系的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(07): 818-822.
阅读次数
全文


摘要