切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2014, Vol. 03 ›› Issue (02) : 117 -123. doi: 10.3877/cma.j.issn.2095-3232.2014.02.013

所属专题: 文献

基础研究

肝硬化大鼠肝大部分切除术后肠道细菌移位机制的研究
梁健1, 潘卫东1,(), 邓浩1, 陈署贤1   
  1. 1. 510630 广州,中山大学附属第三医院肝胆外科
  • 收稿日期:2013-12-23 出版日期:2014-04-10
  • 通信作者: 潘卫东
  • 基金资助:
    国家自然科学基金(81172783)

Mechanism research on intestinal bacterial translocation in rats with liver cirrhosis after partial hepatectomy

Jian Liang1, Weidong Pan1,(), Hao Deng1, Shuxian Chen1   

  1. 1. Department of Hepatobiliary Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
  • Received:2013-12-23 Published:2014-04-10
  • Corresponding author: Weidong Pan
  • About author:
    Corresponding author: Pan Weidong, Email:
引用本文:

梁健, 潘卫东, 邓浩, 陈署贤. 肝硬化大鼠肝大部分切除术后肠道细菌移位机制的研究[J/OL]. 中华肝脏外科手术学电子杂志, 2014, 03(02): 117-123.

Jian Liang, Weidong Pan, Hao Deng, Shuxian Chen. Mechanism research on intestinal bacterial translocation in rats with liver cirrhosis after partial hepatectomy[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2014, 03(02): 117-123.

目的

探讨肝硬化大鼠肝大部分切除术后肠道细菌移位的机制。

方法

4周龄SPF级健康雄性SD大鼠40只,平均体重(90±10) g,建立肝硬化大鼠模型后按随机数字表法随机分为假手术(SO)组和肝大部分切除术(PH)组,每组各20只。SO组仅剪断肝周围韧带后关腹;PH组行改良大鼠肝大部分切除术,切除肝左内、外叶和肝中叶,切除量约2/3。每组大鼠各取10只于术后24 h测量门静脉压力,剩余10只于术后24 h检测血浆D-乳酸、内毒素水平,肠系膜淋巴结细菌含量,小肠黏膜组织学改变,小肠组织紧密连接蛋白ZO-1、Claudin-1含量,小肠组织肿瘤坏死因子(TNF)-α、干扰素(IFN)-γ、肌球蛋白轻链激酶(MLCK)表达水平,粪便菌群变化。两组正态分布的实验数据比较采用t检验;两组小肠黏膜的Chiu's评分采用MQ25Q75)表示,比较采用秩和检验;两组率的比较采用χ2检验。

结果

SO组门静脉压力为(15.4±1.1)cmH2O(1 cmH2O=0.098 kPa),PH组为(22.9±0.7)cmH2O,PH组门静脉压力明显高于SO组(t= -11.15,P<0.05)。SO组血浆内毒素水平为(48.6±2.4)EU/ml,PH组为(52.6±2.3)EU/ml,PH组血浆内毒素水平明显高于SO组(t= -3.31,P<0.05)。PH组肠系膜淋巴结细菌含量为SO组的(162±55)%,PH组肠系膜淋巴结细菌含量较SO组明显增加(t=-2.22,P<0.05)。SO组血浆D-乳酸水平为(37.4±2.8)mg/L,PH组为(60.6±5.0)mg/L,PH组血浆D-乳酸水平明显高于SO组(t= -9.70,P<0.05)。SO组小肠黏膜的Chiu's评分中位数为1(1,2)分,PH组为4(3,4)分,PH组小肠黏膜的Chiu's评分明显高于SO组(Z= -3.52,P<0.05)。SO组小肠组织紧密连接蛋白ZO-1、Claudin-1含量分别为0.70±0.09、0.62±0.10,PH组分别为0.50±0.14、0.33±0.13,PH组小肠组织紧密连接蛋白ZO-1、Claudin-1含量明显低于SO组(t=2.78,2.98;P<0.05)。SO组小肠组织TNF-α、IFN-γ、MLCK的强阳性率分别为20%(2/10)、10%(1/10)、20%(2/10),PH组分别为50%(5/10)、40%(4/10)、70%(7/10),PH组小肠组织TNF-α、IFN-γ、MLCK的强阳性率明显高于SO组(χ2=4.87,8.37,5.01;P<0.05)。PH组粪便大肠埃希菌、类杆菌、梭杆菌、肺炎克雷伯菌、双歧杆菌含量为SO组的(288±74)%、(185±48)%、(278±82)%、(551±96)%、(43±7)%,PH组粪便中大肠埃希菌、类杆菌、梭杆菌、肺炎克雷伯菌含量明显多于SO组,而双歧杆菌含量明显少于SO组(t=2.49,3.68,2.24,5.50,-3.89;P<0.05)。

结论

肝硬化大鼠肝大部分切除术后肠道细菌移位的机制可能与肠道机械屏障和细菌屏障受损有关。术后降低门静脉压力和炎症因子水平、纠正肠道菌群失调可能为减少肠道细菌移位的有效方法。

Objective

To investigate the mechanism of intestinal bacterial translocation in rats with liver cirrhosis after partial hepatectomy.

Methods

Forty healthy spelific pathogen free male Sprague-Dawley (SD) rats [4 weeks old, average weight: (90±10)g] were randomly divided into sham operation group (SO group) and partial hepatectomy group (PH group) with 20 rats in each group after liver cirrhosis model was established. Rats in SO group underwent separation of perihepatic ligaments then the abdomen was closed. Rats in PH group underwent modified partial hepatectomy including resection of left medial lobe, lateral lobe and middle lobe. The volume of resected liver was about 2/3. Portal pressure was tested in 10 rats from each group 24 h after operation. The levels of plasma D-lactate, endotoxin, content of bacteria in mesenteric lymph nodes, histological change of small intestinal mucosa, contents of tight junction protein ZO-1 and Claudin-1 of small intestinal tissue, expressions of tumor necrosis factor (TNF)-α, interferon (IFN)- γ, myosin light chain kinase (MLCK) of small intestinal tissues, changes of fecal flora were tested in the other 10 rats of each group 24 h after operation. The experimental data with normal distribution in 2 groups were compared using t test. The Chiu's scores of small intestinal mucosa in 2 groups were expressed in M(Q25, Q75) and were compared using rank sum test. The comparison of rates in 2 groups was conducted using Chi-square test.

Results

The portal pressure in PH group [(22.9±0.7)cmH2O] (1 cmH2O=0.098 kPa) was significantly higher than that in SO group [(15.4±1.1)cmH2O] (t= -11.15, P<0.05). The level of plasma endotoxin in PH group [(52.6±2.3)EU/ml] increased obviously, compared with that in SO group [(48.6±2.4)EU/ml] (t= -3.31, P<0.05) . The content of bacteria in mesenteric lymph nodes in PH group was (162±55)% of that in SO group, which was significantly higher than that in SO group (t= -2.22, P<0.05). The level of plasma D-lactate was (60.6±5.0)mg/L in PH group, which was significantly higher than that in SO group [(37.4±2.8)mg/L] (t= -9.70, P<0.05). The median of Chiu's score of small intestinal mucosa was 4(3, 4) in PH group, which was significantly higher than that in SO group [1(1, 2)] (Z= -3.52, P<0.05). The contents of tight junction protein ZO-1 and Claudin-1 of small intestinal tissue in PH group were 0.50±0.14, 0.33±0.13 respectively, which were significantly lower than those in SO group (0.70±0.09, 0.62±0.10) (t=2.78, 2.98; P<0.05). The strong positive expression rates of TNF-α, IFN-γ, MLCK were 50%(5/10), 40%(4/10), 70%(7/10) in PH group, which were significantly higher than those in SO group [20%(2/10), 10%(1/10), 20%(2/10)] (χ2=4.87, 8.37, 5.01; P<0.05). The contents of fecal Escherichia coli, Bacteroides, Fusobacterium, Klebsiella pneumoniae, Bifidobacteria in PH group were (288±74)%, (185±48)%, (278±82)%, (551±96)%, (43±7)% of those in SO group. The contents of fecal Escherichia coli, Bacteroides, Fusobacterium, Klebsiella pneumoniae in PH group were significantly higher than those in SO group, while the content of Bifidobacteria was significantly lower (t=2.49, 3.68, 2.24, 5.50, -3.89; P<0.05).

Conclusions

The mechanism of intestinal bacterial translocation in rats with liver cirrhosis after partial hepatectomy may be associated with the damage of intestinal mechanical barrier and bacterial barrier. Reducing the portal pressure and level of inflammatory factor, and correcting the intestinal bacterial imbalance may be effective methods for reducing intestinal bacterial translocation.

图1 两组大鼠小肠组织肿瘤坏死因子-α表达情况(免疫组化法×200)
图2 两组大鼠小肠组织干扰素-γ表达情况(免疫组化法×200)
图3 两组大鼠小肠组织肌球蛋白轻链激酶表达情况(免疫组化法×200)
[1]
Capussotti L,Viganò L,Giuliante F, et a1.Liver dysfunction and sepsis determine operative mortality after liver resection[J]. Br J Surg, 2009, 96(1): 88-94.
[2]
Chen WZ,Hu KP,Xu RY, et al. Beneficial effect of splenic artery ligation on bacterial translocation after major liver resection in rats[J]. Dig Liver Dis, 2013, 45(3): 233-237.
[3]
Ekberg H,Tranberg KG,Andersson R, et al. Major liver resection: perioperative course and management[J]. Surgery, 1986, 100(1): 1-8.
[4]
Kamada N,Calne RY. A surgical experience with five hundred thirty liver transplants in the rat[J]. Surgery, 1983, 93(1 Pt 1): 64-69.
[5]
Chiu CJ,McArdle AH,Brown R, et al. Intestinal mucosal lesion in low-flow states: IA morphological, hemodynamic, and metabolic reappraisal[J]. . Arch Surg, 1970, 101(4): 478-483.
[6]
Nakao T,Kurita N,Komatsu M, et al. Irinotecan injures tight junction and causes bacterial translocation in rat[J]. J Surg Res, 2012, 173(2): 341-347.
[7]
Benten D,Wiest R. Gut microbiome and intestinal barrier failure: the "Achilles heel" in hepatology?[J]. J Hepatol, 2012, 56(6): 1221-1223.
[8]
Wang XD,Pärsson H,Andersson R, et al. Bacterial translocation, intestinal ultrastructure and cell membrane permeability early after major liver resection in the rat[J]. Br J Surg, 1994, 81(4): 579-584.
[9]
Watson AJ,Hughes KR. TNF-α-induced intestinal epithelial cell shedding: implications for intestinal barrier function[J]. Ann N Y Acad Sci, 2012(1258): 1-8.
[10]
Van Itallie CM,Anderson JM. Claudins and epithelial paracellular transport[J]. Annu Rev Physiol, 2006(68): 403-29.
[11]
Fasano A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer[J]. Physiol Rev, 2011, 91(1): 151-175.
[12]
Kiesslich R,Duckworth CA,Moussata D, et al. Local barrier dysfunction identified by confocal laser endomicroscopy predicts relapse in inflammatory bowel disease[J]. Gut, 2012, 61(8): 1146-1153.
[13]
Utech M,Mennigen R,Bruewer M. Endocytosis and recycling of tight junction proteins in inflammation[J]. J Biomed Biotechnol, 2010: 484987.
[14]
Campbell KJ,Rocha S,Perkins ND. Active repression of antiapoptotic gene expression by RelA(p65) NF-kappa B[J]. Mol Cell, 2004, 13(6): 853-865.
[15]
Catalioto RM,Maggi CA,Giuliani S. Intestinal epithelial barrier dysfunction in disease and possible therapeutical interventions[J]. Curr Med Chem, 2011, 18(3): 398-426.
[16]
Bruewer M,Utech M,Ivanov AI, et al. Interferon-gamma induces internalization of epithelial tight junction proteins via a macropinocytosis-like process[J]. FASEB J, 2005, 19(8): 923-933.
[17]
Lupp C,Robertson ML,Wickham ME, et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae[J]. Cell Host Microbe, 2007, 2(2): 119-129.
[18]
Corridoni D,Pastorelli L,Mattioli B, et al. Probiotic bacteria regulate intestinal epithelial permeability in experimental ileitis by a TNF-dependent mechanism[J]. PLoS One, 2012, 7(7): e42067.
[19]
Jones SE,Versalovic J. Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors[J]. BMC Microbiol, 2009(9): 35.
[20]
Gaboriau-Routhiau V,Rakotobe S,Lécuyer E, et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses[J]. Immunity, 2009, 31(4): 677-689.
[21]
Maslowski KM,Vieira AT,Ng A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43[J]. Nature, 2009, 461(7268): 1282-1286.
[22]
Simonovic I,Rosenberg J,Koutsouris A, et al. Enteropathogenic Escherichia coli dephosphorylates and dissociates occludin from intestinal epithelial tight junctions[J]. Cell Microbiol, 2000, 2(4): 305-315.
[23]
Barber AE,Jones WG 2nd,Minei JP, et al. Bacterial overgrowth and intestinal atrophy in the etiology of gut barrier failure in the rat[J]. Am J Surg, 1991, 161(2): 300-304.
[1] 农云洁, 黄小桂, 黄裕兰, 农恒荣. 超声在多重肺部感染诊断中的临床应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 872-876.
[2] 刘思锐, 赵辰阳, 张睿, 张一休, 杨萌. 多普勒超声对孕鼠子宫动脉不同节段血流动力学参数的评估[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 877-883.
[3] 钟锴, 蒋铁民, 张瑞青, 吐尔干艾力·阿吉, 邵英梅, 郭强. 加速康复外科在肝囊型棘球蚴病肝切除术中的应用分析[J/OL]. 中华普通外科学文献(电子版), 2024, 18(06): 425-429.
[4] 李华志, 曹广, 刘殿刚, 张雅静. 不同入路下行肝切除术治疗原发性肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 52-55.
[5] 冯旺, 马振中, 汤林花. CT扫描三维重建在肝内胆管细胞癌腹腔镜肝切除术中的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 104-107.
[6] 梁孟杰, 朱欢欢, 王行舟, 江航, 艾世超, 孙锋, 宋鹏, 王萌, 刘颂, 夏雪峰, 杜峻峰, 傅双, 陆晓峰, 沈晓菲, 管文贤. 联合免疫治疗的胃癌转化治疗患者预后及术后并发症分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 619-623.
[7] 皮尔地瓦斯·麦麦提玉素甫, 李慧灵, 艾克拜尔·艾力, 李赞林, 王志, 克力木·阿不都热依木. 生物补片修补巨大复发性腹壁切口疝临床疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 624-628.
[8] 王浩源, 汪海洋, 孙建明, 陈以宽, 祁小桐, 唐博. 腹腔镜与开放修补对肝硬化腹外疝患者肝功能及凝血的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 654-659.
[9] 顾熙, 徐子宇, 周澍, 张吴楼, 张业鹏, 林昊, 刘宗航, 嵇振岭, 郑立锋. 腹股沟疝腹膜前间隙无张力修补术后补片感染10 例报道[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 665-669.
[10] 臧宇, 姚胜, 朱新勇, 戎世捧, 田智超. 低温等离子射频消融治疗腹壁疝术后补片感染的临床效果[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 687-692.
[11] 杨闯, 马雪. 腹壁疝术后感染的危险因素分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 693-696.
[12] 杭轶, 杨小勇, 李文美, 薛磊. 可控性低中心静脉压技术在肝切除术中应用的最适中心静脉压[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 813-817.
[13] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[14] 贾玲玲, 滕飞, 常键, 黄福, 刘剑萍. 心肺康复在各种疾病中应用的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 859-862.
[15] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?