切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2017, Vol. 06 ›› Issue (02) : 134 -138. doi: 10.3877/cma.j.issn.2095-3232.2017.02.014

所属专题: 文献

基础研究

STEAP3对肝癌细胞增殖能力的抑制作用及机制
范伟明1, 姚志成2, 徐见亮1, 熊志勇2, 李瑞曦1, 周伯宣1, 邓美海1,()   
  1. 1. 510630 广州,中山大学附属第三医院肝胆外科
    2. 510530 广州,中山大学附属第三医院岭南医院普通外科
  • 收稿日期:2016-11-26 出版日期:2017-04-10
  • 通信作者: 邓美海
  • 基金资助:
    国家自然科学基金(81572726); 广东省科技计划项目(2014A020212122); 广东省医学科研基金(A2016312); 广州市科技计划项目(1563000226)

Effect and mechanism of STEAP3 on inhibiting the proliferation ability of hepatocellular carcinoma cells

Weiming Fan1, Zhicheng Yao2, Jianliang Xu1, Zhiyong Xiong2, Ruixi Li1, Boxuan Zhou1, Meihai Deng1,()   

  1. 1. Department of Hepatobiliary Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
    2. Department of General Surgery, Lingnan Hospital, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510530, China
  • Received:2016-11-26 Published:2017-04-10
  • Corresponding author: Meihai Deng
  • About author:
    Corresponding author: Deng Meihai, Email:
引用本文:

范伟明, 姚志成, 徐见亮, 熊志勇, 李瑞曦, 周伯宣, 邓美海. STEAP3对肝癌细胞增殖能力的抑制作用及机制[J/OL]. 中华肝脏外科手术学电子杂志, 2017, 06(02): 134-138.

Weiming Fan, Zhicheng Yao, Jianliang Xu, Zhiyong Xiong, Ruixi Li, Boxuan Zhou, Meihai Deng. Effect and mechanism of STEAP3 on inhibiting the proliferation ability of hepatocellular carcinoma cells[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2017, 06(02): 134-138.

目的

探讨前列腺六次跨膜蛋白(STEAP3)对肝癌细胞增殖能力的抑制作用及机制。

方法

构建稳定干扰表达STEAP3的肝癌细胞株7721-shSTEAP3、QGY-shSTEAP3(干扰组),及其对照细胞株7721-VECTOR、QGY-VECTOR(对照组)。采用RT-PCR检测STEAP3 mRNA的表达,CCK-8法检测细胞增殖能力,流式细胞仪检测细胞周期,Western blot检测细胞周期相关蛋白的表达。实验数据比较采用t检验。

结果

成功构建稳定干扰表达STEAP3的肝癌细胞株,干扰组7721-shSTEAP3和QGY-shSTEAP3细胞的STEAP3 mRNA表达量分别为(5.10±0.70)×10-3和(0.09±0.02)×10-3,明显低于对照组7721-VECTOR和QGY-VECTOR细胞的(7.80±0.07)×10-3和(7.00±0.21)×10-3t=-9.60,-57.16;P<0.05)。细胞生长曲线显示干扰组7721-shSTEAP3和QGY-shSTEAP3细胞的增殖能力明显强于对照组7721-VECTOR和QGY-VECTOR细胞。细胞周期检测结果显示干扰组7721-shSTEAP3和QGY-shSTEAP3细胞的G0/G1期分别为(55.23±0.51)%、(57.38±0.78)%,明显低于对照组7721-VECTOR和QGY-VECTOR细胞的(68.25±0.28)%、(77.55±0.89)%(t=-7.83,-27.39;P<0.05)。干扰组7721-shSTEAP3和QGY-shSTEAP3细胞的细胞周期蛋白(cyclin)D1、细胞周期蛋白依赖激酶(CDK)4蛋白表达水平分别为0.730±0.017、1.090±0.028和0.780±0.063、1.310±0.031,明显高于对照组7721-VECTOR和QGY-VECTOR细胞的0.660±0.059、0.780±0.085和0.530±0.014、0.920±0.024 (t=4.47,6.87和12.33,4.89;P<0.05)。

结论

STEAP3具有抑制肝癌细胞增殖能力的作用,其机制可能与G1期细胞周期阻滞有关。

Objective

To investigate the effect and mechanism of six transmembrane epithelial antigen prostate 3 (STEAP3) on inhibiting the proliferation of hepatocellular carcinoma (HCC) cells.

Methods

HCC cell lines 7721-shSTEAP3 and QGY-shSTEAP3 expressing STEAP3 were stably interfered in the interference group. And the control cells 7721-VECTOR and QGY-VECTOR were also established in the control group. The expression of STEAP3 mRNA was detected by RT-PCR. The proliferation ability of the cells was detected by CCK-8 assay. Cell cycle was detected by flow cytometry. The expression of cell cycle-associated proteins were detected by Western blot. The experimental data were compared using t test.

Results

HCC cell lines expressing STEAP3 were stably interfered successfully. The expression levels of STEAP3 mRNA in the 7721-shSTEAP3 and QGY-shSTEAP3 cells of the interference group were respectively (5.10±0.70)×10-3 and (0.09±0.02)×10-3, significantly lower than (7.80±0.07)×10-3 and (7.00±0.21)×10-3 in the 7721-VECTOR and QGY-VECTOR cells of the control group (t=-9.60, -57.16; P<0.05). Cell growth curve showed that the proliferation ability of 7721-shSTEAP3 and QGY-shSTEAP3 cells in the interference group were significantly enhanced compared with that of 7721-VECTOR and QGY-VECTOR cells in the control group. Cell cycle detection showed that (55.23±0.51)% and (57.38±0.78)% of 7721-shSTEAP3 and QGY-shSTEAP3 cells in the interference group were in G0/G1 phase, significantly lower than (68.25±0.28)% and (77.55±0.89)% of 7721-VECTOR and QGY-VECTOR cells in the control group (t= -7.83, -27.39; P<0.05). The expression levels of cyclin D1 and protein cyclin-dependent kinase 4 (CDK4) of the 7721-shSTEAP3 and QGY-shSTEAP3 cells in the interference group were respectively 0.730±0.017, 1.090±0.028 and 0.780±0.063, 1.310±0.031, significantly higher than 0.660±0.059, 0.780±0.085 and 0.530±0.014, 0.920±0.024 of the 7721-VECTOR and QGY-VECTOR cells in the control group (t=4.47, 6.87 and 12.33, 4.89; P<0.05).

Conclusions

STEAP3 exerts an effect on inhibiting the proliferation ability of HCC cells. The mechanism may probably be correlated with blocking the G1 phase of cell cycle.

图1 干扰组和对照组细胞各时间点的生长曲线
图2 Western blot检测STEAP3对肝癌细胞周期相关蛋白表达水平的影响
[1]
Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65(2):87-108.
[2]
Forner A, Reig M, Varela M, et al. Diagnosis and treatment of hepatocellular carcinoma. update consensus document from the AEEH, SEOM, SERAM, SERVEI and SETH[J]. Med Clin, 2016, 146(11):511.
[3]
周开梅,郭瑞珍.细胞周期蛋白在恶性肿瘤中的表达[J].医学综述,2010,16(4):533-536.
[4]
Passer BJ, Nancy-Portebois V, Amzallag N, et al. The p53-inducible TSAP6 gene product regulates apoptosis and the cell cycle and interacts with Nix and the Myt1 kinase[J]. Proc Natl Acad Sci U S A, 2003, 100(5):2284-2289.
[5]
Caillot F, Daveau R, Daveau M, et al. Down-regulated expression of the TSAP6 protein in liver is associated with a transition from cirrhosis to hepatocellular carcinoma[J]. Histopathology, 2009, 54(3):319-327.
[6]
周业庭,吴柏华,徐本文,等.PI3Kp110beta和前强啡肽在人肝癌组织中的表达[J].中华实验外科杂志,2008,25(11):1399-1400.
[7]
Hubert RS, Vivanco I, Chen E, et al. STEAP: a prostate-specific cell-surface antigen highly expressed in human prostate tumors[J]. Proc Natl Acad Sci U S A, 1999, 96(25):14523-14528.
[8]
Ihlaseh-Catalano SM, Drigo SA, de Jesus CM, et al. STEAP1 protein overexpression is an independent marker for biochemical recurrence in prostate carcinoma[J]. Histopathology, 2013, 63(5):678-685.
[9]
Isobe T, Baba E, Arita S, et al. Human STEAP3 maintains tumor growth under hypoferric condition[J]. Exp Cell Res, 2011, 317(18):2582-2591.
[10]
韩世愈,王娇.细胞周期蛋白在恶性肿瘤中的表达及其在肿瘤治疗中的作用[J].分子诊断与治疗杂志,2013(5):357-360.
[11]
Güller M, Toualbi-Abed K, Legrand A, et al. c-Fos overexpression increases the proliferation of human hepatocytes by stabilizing nuclear Cyclin D1[J]. World J Gastroenterol, 2008, 14(41):6339-6346.
[12]
Lee TK, Man K, Poon RT, et al. Disruption of p53-p21/WAF1 cell cycle pathway contributes to progression and worse clinical outcome of hepatocellular carcinoma[J]. Oncol Rep, 2004, 12(1):25-31.
[13]
Wang C, Li Z, Fu M, et al. Signal transduction mediated by cyclin D1: from mitogens to cell proliferation: a molecular target with therapeutic potential[J]. Cancer Treat Res, 2004(119):217-237.
[14]
Lee CC, Yamamoto S, Wanibuchi H, et al. Cyclin D1 overexpression in rat two-stage bladder carcinogenesis and its relationship with oncogenes, tumor suppressor genes, and cell proliferation[J]. Cancer Res, 1997, 57(21):4765-4776.
[15]
Bonelli P, Tuccillo FM, Borrelli A, et al. CDK/CCN and CDKI alterations for cancer prognosis and therapeutic predictivity[J]. Biomed Res Int, 2014:361020.
[16]
Akin S, Babacan T, Sarici F, et al. A novel targeted therapy in breast cancer: cyclin dependent kinase inhibitors[J]. J BUON, 2014, 19(1):42-46.
[17]
Hnit SS, Xie C, Yao M, et al. p27(Kip1) signaling: transcriptional and post-translational regulation[J]. Int J Biochem Cell Biol, 2015(68):9-14.
[18]
Nadeem L, Brkic J, Chen YF, et al. Cytoplasmic mislocalization of p27 and CDK2 mediates the anti-migratory and anti-proliferative effects of Nodal in human trophoblast cells[J]. J Cell Sci, 2013, 126(Pt 2):445-453.
[19]
Dai L, Liu Y, Liu J, et al. A novel cyclinE/cyclinA-CDK inhibitor targets p27(Kip1) degradation, cell cycle progression and cell survival: implications in cancer therapy[J]. Cancer Lett, 2013, 333(1):103-112.
[20]
He W, Wang X, Chen L, et al. A crosstalk imbalance between p27(Kip1) and its interacting molecules enhances breast carcinogenesis[J]. Cancer Biother Radiopharm, 2012, 27(7):399-402.
[1] 涂盛楠, 胡芬, 张娟, 蔡海峰, 杨俊泉. 天然植物提取物在乳腺癌治疗中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 366-370.
[2] 刘琴, 刘瀚旻, 谢亮. 基质金属蛋白酶在儿童哮喘发生机制中作用的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 564-568.
[3] 高俊颖, 张海洲, 区泓乐, 孙强. FOLFOX-HAIC 为基础的肝细胞癌辅助转化治疗的应用进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(06): 457-463.
[4] 罗青杉, 梅海涛, 郝家领, 蔡锦锋, 周润楷, 温玉刚. 连接蛋白43通过调控细胞周期抑制结直肠癌的增殖机制研究[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 344-349.
[5] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[6] 赖全友, 高远, 汪建林, 屈士斌, 魏丹, 彭伟. 三维重建技术结合腹腔镜精准肝切除术对肝癌患者术后CD4+、CD8+及免疫球蛋白水平的影响[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 651-654.
[7] 黄福, 王黔, 金相任, 唐云川. VEGFR2、miR-27a-5p在胃癌组织中的表达与临床病理参数及预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 558-561.
[8] 祝炜安, 林华慧, 吴建杰, 黄炯煅, 吴婷婷, 赖文杰. RDM1通过CDK4促进前列腺癌细胞进展的研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 618-625.
[9] 赵蒙蒙, 黄洁, 余荣环, 王葆青. 过表达小GTP酶Rab32抑制非小细胞肺癌细胞侵袭性生长[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 512-518.
[10] 黄程鑫, 陈莉, 刘伊楚, 王水良, 赖晓凤. OPA1 在乳腺癌组织的表达特征及在ER阳性乳腺癌细胞中的生物学功能研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 275-284.
[11] 李一帆, 朱帝文, 任伟新, 鲍应军, 顾俊鹏, 张海潇, 曹耿飞, 阿斯哈尔·哈斯木, 纪卫政. 血GP73水平在原发性肝癌TACE疗效评价中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 825-830.
[12] 陆镜明, 韩大为, 任耀星, 黄天笑, 向俊西, 张谞丰, 吕毅, 王傅民. 基于术前影像组学的肝内胆管细胞癌淋巴结转移预测的系统性分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 852-858.
[13] 吴雪云, 胡小军, 范应方. 肝切除术中剩余肝再生能力的评估与预测[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 894-897.
[14] 林小勇, 张兰霞, 曾庆劲, 贺需旗, 谭雷, 郭光辉, 龙颖琳, 李凯, 吴宇轩. 负压抽吸活检针在肝困难病灶活检中的初步应用研究[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 694-698.
[15] 雷永琪, 刘新阳, 杨黎渝, 铁学宏, 俞星新, 耿志达, 刘雨, 陈政良, 惠鹏, 梁英健. 肝脏血管周上皮样细胞肿瘤合并贫血一例并文献复习[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 710-718.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?