切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2020, Vol. 09 ›› Issue (03) : 283 -288. doi: 10.3877/cma.j.issn.2095-3232.2020.03.018

所属专题: 文献

基础研究

脂多糖诱导小鼠肝癌YAP表达及其调控巨噬细胞极化的研究
郑啟发1, 李华1,(), 袁泽南1, 叶林森1, 朱曙光1, 夏龙1   
  1. 1. 510630 广州,中山大学附属第三医院肝脏外科
  • 收稿日期:2020-02-25 出版日期:2020-06-10
  • 通信作者: 李华
  • 基金资助:
    国家自然科学基金面上项目(81172038); 广州市科技计划项目(201607010024)

Lipopolysaccharide induces YAP expression and regulates macrophage polarization in liver tumor of mouse

Qifa Zheng1, Hua Li1,(), Zenan Yuan1, Linsen Ye1, Shuguang Zhu1, Long Xia1   

  1. 1. Department of Liver Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
  • Received:2020-02-25 Published:2020-06-10
  • Corresponding author: Hua Li
  • About author:
    Corresponding author: Li Hua, Email:
引用本文:

郑啟发, 李华, 袁泽南, 叶林森, 朱曙光, 夏龙. 脂多糖诱导小鼠肝癌YAP表达及其调控巨噬细胞极化的研究[J/OL]. 中华肝脏外科手术学电子杂志, 2020, 09(03): 283-288.

Qifa Zheng, Hua Li, Zenan Yuan, Linsen Ye, Shuguang Zhu, Long Xia. Lipopolysaccharide induces YAP expression and regulates macrophage polarization in liver tumor of mouse[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2020, 09(03): 283-288.

目的

探讨小鼠肝癌原位移植瘤模型中脂多糖(LPS)诱导Yes相关蛋白(YAP)的表达情况及其调控巨噬细胞极化的机制。

方法

建立野生型(WT)、YAP基因敲除(YAP-HKO)、YAP-WT C57BL/6小鼠肝癌模型,随机选取4只WT小鼠作为LPS组,予每天腹腔注射LPS 5 mg/kg;另选4只作为对照组,予腹腔注射等体积生理盐水。为验证YAP的作用,设置YAP-HKO小鼠组及其同窝YAP-WT小鼠组,每组各4只。各组小鼠饲养10 d后处死,测量肝肿瘤体积;免疫组化法观察LPS组和对照组小鼠肝组织YAP、Ki67、F4/80、CD163,YAP-HKO和YAP-WT小鼠肝组织F4/80、CD163的表达情况。流式细胞术检测小鼠肝组织巨噬细胞分型情况。两组检测指标比较采用t检验。

结果

LPS组小鼠肝肿瘤体积为(2.50±0.79)cm3,明显大于对照组的(0.97±0.29)cm3t=3.641,P<0.05);YAP-HKO小鼠肝肿瘤体积为(0.13±0.11)cm3,明显小于YAP-WT小鼠的(0.78±0.23)cm3t=-5.100,P<0.05)。LPS组肝组织YAP、Ki67、F4/80、CD163表达均高于对照组。YAP-HKO小鼠肝组织F4/80、CD163表达均低于YAP-WT小鼠。LPS组肝组织M2型巨噬细胞百分率为(69±3)%,明显高于对照组的(45±4)%(t=9.768,P<0.05)。YAP-HKO小鼠组肝组织M2型巨噬细胞百分率为(54±4)%,明显低于YAP-WT小鼠组的(68±7)%(t=-3.669,P<0.05)。

结论

在小鼠肝癌原位移植瘤模型中,LPS通过促进YAP的表达,募集巨噬细胞并促进其向M2型极化,促进肿瘤增殖。

Objective

To investigate the role of lipopolysaccharide (LPS) in inducing the expression of YAP and regulating the macrophage polarization in the mouse model of orthotopically implanted liver tumor.

Methods

The wild type (WT), YAP gene-knockout (YAP-HKO), YAP- WT C57BL/6 mouse liver tumor models were established. After the models were established, 4 WT mice were randomly selected and assigned into the LPS group and were administered intraperitoneally with LPS 5 mg/kg per day. Another 4 mice were allocated into the control group and were given intraperitoneally with equivalent amount of normal saline. To verify the effect of YAP, YAP-HKO mouse group (n=4) and YAP-WT littermate mouse group (n=4) were established. All mice in each group were sacrificed after feeding for 10 d. The volume of liver tumor was measured. The expression levels of YAP, Ki67, F4/80 and CD163 in liver tissues in LPS and control groups, and the expression of F4/80 and CD163 in liver tissues of YAP-HKO and YAP-WT mice were observed by immunohistochemistry. The phenotype of macrophages in the mouse liver tissues was analyzed by flow cytometry. Parameters between two groups were statistically compared by t test.

Results

The volume of liver tumor in LPS group was (2.50±0.79) cm3, significantly larger than (0.97±0.29) cm3 in control group (t=3.641, P<0.05). The liver tumor volume of YAP-HKO mice was (0.13±0.11) cm3, significantly smaller than (0.78±0.23) cm3 of YAP-WT mice (t=-5.100, P<0.05). The expression levels of YAP, Ki67, F4/80 and CD163 in the liver tissues in LPS group were higher than those in control group. The expression levels of F4/80 and CD163 in the liver tissues of YAP-HKO mice were lower compared with those of YAP-WT mice. The percentage of M2-type macrophages in the liver tissues in LPS group was (69±3)%, significantly higher than (45±4)% in the control group (t=9.768, P<0.05). The percentage of M2-type macrophages in the liver tissues of YAP-HKO mice was (54±4)%, significantly lower than (68±7)% of YAP-WT mice (t=-3.669, P<0.05).

Conclusions

In the mouse model of orthotopically implanted liver tumor, LPS can recruit macrophages and induce M2-type macrophage polarization to promote the tumor proliferation by up-regulating the expression of YAP.

图1 小鼠肝脏移植瘤模型LPS诱导YAP表达实验组成瘤情况
图2 免疫组化法检测小鼠肝组织YAP、Ki67、F4/80、CD163表达(×400)
图3 LPS组及对照组小鼠肝组织M1、M2型巨噬细胞流式细胞术结果
图4 免疫组化法检测YAP-HKO及YAP-WT小鼠肝组织F4/80、CD163表达(×400)
[1]
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6):394-424.
[2]
Rook GA,Dalgleish A. Infection,immunoregulation,and cancer[J]. Immunol Rev, 2011, 240(1):141-159.
[3]
Chaturvedi VK, Singh A, Dubey SK, et al. Molecular mechanistic insight of hepatitis B virus mediated hepatocellular carcinoma[J]. Microb Pathog, 2019, 128(3):184-194.
[4]
Yu LX, Schwabe RF. The gut microbiome and liver cancer; mechanisms and clinical translation[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(9):527-539.
[5]
Zhou TY, Zhou YL, Qian MJ, et al. Interleukin-6 induced by YAP in hepatocellular carcinoma cells recruits tumor-associated macrophages[J]. J Pharmacol Sci, 2018, 138(2):89-95.
[6]
Zhou X, Li W, Wang S, et al. YAP aggravates inflammatory bowel disease by regulating M1/M2 macrophage polarization and gut microbial homeostasis[J]. Cell Rep, 2019, 27(4):1176-1189, e5.
[7]
Wang Z, Yan M, Li J,et al. Dual functions of STAT3 in LPS-induced angiogenesisof hepatocellular carcinoma[J]. Biochim Biophys Acta Mol Cell Res, 2019, 1866(4):566-574.
[8]
Dong YQ, Lu CW, Zhang L,et al. Toll-like receptor 4 signaling promotes invasion of hepatocellular carcinoma cells through MKK4/JNK pathway[J]. Mol Immunol, 2015, 68(2 Pt C):671-683.
[9]
Lu Y, Xu J, Chen S, et al. Lipopolysaccharide promotes angiogenesis in mice model of HCC by stimulating hepatic stellate cell activation via TLR4 pathway[J]. Acta Biochim Biophys Sin, 2017, 49(11):1029-1034.
[10]
Yi L, Huang X, Guo F, et al. Lipopolysaccharide induces human pulmonary micro-vascular endothelial apoptosis via the YAP signaling pathway[J]. Front Cell Infect Microbiol, 2016(6):133.
[11]
Wang G, Lu X, Dey P, et al. Targeting YAP-dependent MDSC infiltration impairs tumor progression[J]. Cancer Discov, 2016, 6(1): 80-95.
[12]
Fan Z, Xia H, Xu H, et al. Standard CD44 modulates YAP1 through a positive feedback loop in hepatocellular carcinoma[J]. Biomed Pharmacother, 2018, 103:147-156.
[13]
Noce V, Battistelli C, Cozzolino AM, et al.YAP integrates the regulatory Snail/HNF4α circuitry controlling epithelial/hepatocyte differentiation[J]. Cell Death Dis, 2019, 10(10):768.
[14]
Guo X, Zhao Y, Yan H, et al. Single tumor-initiating cells evade immune clearance by recruiting type II macrophages[J]. Genes Dev, 2017, 31(3):247-259.
[15]
Yang L, Zhang Y. Tumor-associated macrophages: from basic research to clinical application[J]. J Hematol Oncol, 2017, 10(1):58.
[16]
Biswas SK, Allavena P, Mantovani A. Tumor-associated macrophages: functional diversity, clinical significance, and open questions[J]. Semin Immunopathol, 2013, 35(5):585-600.
[17]
Yeung OW, Lo CM, Lin CC. et al. Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma[J]. J Hepatol, 2015, 62(3):607-616.
[18]
Huang YJ, Yang CK, Wei PL, et al. Ovatodiolide suppresses colon tumorigenesis and prevents polarization of M2 tumor-associated macrophages through YAP oncogenic pathways[J]. J Hematol Oncol, 2017, 10(1):60.
[19]
Lee PC, Machner MP. The legionella effector kinase LegK7 hijacks the host Hippo pathway to promote infection[J]. Cell Host Microbe, 2018, 24(3):429-438.
[20]
Bouhlel MA, Derudas B, Rigamonti E, et al. PPAR gamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties[J]. Cell Metab, 2007, 6(2):137-143.
[1] 张凯, 乔永杰, 林志强, 刘健, 邓泽群, 谭飞, 曾健康, 李嘉欢, 李培杰, 周胜虎. 假体周围骨溶解中巨噬细胞极化的机制研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 618-625.
[2] 杨瑾, 刘雪克, 张媛媛, 金钧, 韦瑶. 肠道微生物来源石胆酸对脓毒症相关肝损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 265-274.
[3] 李璐璐, 马利红, 金佳佳, 谷伟. 干扰素基因刺激因子通过肺巨噬细胞胞葬功能调控急性肺损伤小鼠修复的研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(02): 97-103.
[4] 薛嘉怡, 王丽, 艾涛. 巨噬细胞在儿童肺炎支原体肺炎中作用机制的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2023, 19(06): 643-648.
[5] 狄静怿, 陈禹江, 陈欣欣, 陈文霞. 基质细胞衍生因子1通过PI3K/AKT1信号通路对巨噬细胞极化的影响[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 89-95.
[6] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[7] 李卓骋, 陈羽翔, 高亮, 张宇, 朱许源, 马晓杰, 李涛, 赵甜甜, 蒋鸿涛. 巨噬细胞-肌成纤维细胞转化在肾纤维化过程中的作用[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 181-185.
[8] 曹飞, 庞俊. 前列腺癌免疫微环境中免疫抑制性细胞分类及其作用机制[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 121-125.
[9] 张礼刚, 邹志辉, 许顺, 蔡可可, 胡永涛, 梁朝朝. 酒精对慢性非细菌性前列腺炎中T淋巴细胞变化的影响研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 74-81.
[10] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[11] 朱军, 宋家伟, 乔一桓, 郭雅婕, 刘帅, 姜玉, 李纪鹏. M2型巨噬细胞特征基因与结肠癌免疫微环境研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 303-311.
[12] 李松栗, 黄蔚, 巢杰, 杨毅, 邱海波. 单核/巨噬细胞来源的细胞外囊泡在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 253-257.
[13] 陈含冰, 储翠林, 邱海波. 急性呼吸窘迫综合征中巨噬细胞死亡方式的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(01): 79-84.
[14] 蒋心怡, 顾丹丹, 叶艳, 缪佳蓉. RNA测序研究抗菌肽KT2治疗溃疡性结肠炎的作用机制[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(01): 8-15.
[15] 李仔祥, 王苏贵, 张先云, 卢建文, 嵇宏声, 姜福金. 肿瘤相关性巨噬细胞通过TNF-α/B7H3调节人膀胱癌细胞增殖的研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(01): 64-71.
阅读次数
全文


摘要