切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2020, Vol. 09 ›› Issue (03) : 283 -288. doi: 10.3877/cma.j.issn.2095-3232.2020.03.018

所属专题: 文献

基础研究

脂多糖诱导小鼠肝癌YAP表达及其调控巨噬细胞极化的研究
郑啟发1, 李华1,(), 袁泽南1, 叶林森1, 朱曙光1, 夏龙1   
  1. 1. 510630 广州,中山大学附属第三医院肝脏外科
  • 收稿日期:2020-02-25 出版日期:2020-06-10
  • 通信作者: 李华
  • 基金资助:
    国家自然科学基金面上项目(81172038); 广州市科技计划项目(201607010024)

Lipopolysaccharide induces YAP expression and regulates macrophage polarization in liver tumor of mouse

Qifa Zheng1, Hua Li1,(), Zenan Yuan1, Linsen Ye1, Shuguang Zhu1, Long Xia1   

  1. 1. Department of Liver Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
  • Received:2020-02-25 Published:2020-06-10
  • Corresponding author: Hua Li
  • About author:
    Corresponding author: Li Hua, Email:
引用本文:

郑啟发, 李华, 袁泽南, 叶林森, 朱曙光, 夏龙. 脂多糖诱导小鼠肝癌YAP表达及其调控巨噬细胞极化的研究[J]. 中华肝脏外科手术学电子杂志, 2020, 09(03): 283-288.

Qifa Zheng, Hua Li, Zenan Yuan, Linsen Ye, Shuguang Zhu, Long Xia. Lipopolysaccharide induces YAP expression and regulates macrophage polarization in liver tumor of mouse[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2020, 09(03): 283-288.

目的

探讨小鼠肝癌原位移植瘤模型中脂多糖(LPS)诱导Yes相关蛋白(YAP)的表达情况及其调控巨噬细胞极化的机制。

方法

建立野生型(WT)、YAP基因敲除(YAP-HKO)、YAP-WT C57BL/6小鼠肝癌模型,随机选取4只WT小鼠作为LPS组,予每天腹腔注射LPS 5 mg/kg;另选4只作为对照组,予腹腔注射等体积生理盐水。为验证YAP的作用,设置YAP-HKO小鼠组及其同窝YAP-WT小鼠组,每组各4只。各组小鼠饲养10 d后处死,测量肝肿瘤体积;免疫组化法观察LPS组和对照组小鼠肝组织YAP、Ki67、F4/80、CD163,YAP-HKO和YAP-WT小鼠肝组织F4/80、CD163的表达情况。流式细胞术检测小鼠肝组织巨噬细胞分型情况。两组检测指标比较采用t检验。

结果

LPS组小鼠肝肿瘤体积为(2.50±0.79)cm3,明显大于对照组的(0.97±0.29)cm3t=3.641,P<0.05);YAP-HKO小鼠肝肿瘤体积为(0.13±0.11)cm3,明显小于YAP-WT小鼠的(0.78±0.23)cm3t=-5.100,P<0.05)。LPS组肝组织YAP、Ki67、F4/80、CD163表达均高于对照组。YAP-HKO小鼠肝组织F4/80、CD163表达均低于YAP-WT小鼠。LPS组肝组织M2型巨噬细胞百分率为(69±3)%,明显高于对照组的(45±4)%(t=9.768,P<0.05)。YAP-HKO小鼠组肝组织M2型巨噬细胞百分率为(54±4)%,明显低于YAP-WT小鼠组的(68±7)%(t=-3.669,P<0.05)。

结论

在小鼠肝癌原位移植瘤模型中,LPS通过促进YAP的表达,募集巨噬细胞并促进其向M2型极化,促进肿瘤增殖。

Objective

To investigate the role of lipopolysaccharide (LPS) in inducing the expression of YAP and regulating the macrophage polarization in the mouse model of orthotopically implanted liver tumor.

Methods

The wild type (WT), YAP gene-knockout (YAP-HKO), YAP- WT C57BL/6 mouse liver tumor models were established. After the models were established, 4 WT mice were randomly selected and assigned into the LPS group and were administered intraperitoneally with LPS 5 mg/kg per day. Another 4 mice were allocated into the control group and were given intraperitoneally with equivalent amount of normal saline. To verify the effect of YAP, YAP-HKO mouse group (n=4) and YAP-WT littermate mouse group (n=4) were established. All mice in each group were sacrificed after feeding for 10 d. The volume of liver tumor was measured. The expression levels of YAP, Ki67, F4/80 and CD163 in liver tissues in LPS and control groups, and the expression of F4/80 and CD163 in liver tissues of YAP-HKO and YAP-WT mice were observed by immunohistochemistry. The phenotype of macrophages in the mouse liver tissues was analyzed by flow cytometry. Parameters between two groups were statistically compared by t test.

Results

The volume of liver tumor in LPS group was (2.50±0.79) cm3, significantly larger than (0.97±0.29) cm3 in control group (t=3.641, P<0.05). The liver tumor volume of YAP-HKO mice was (0.13±0.11) cm3, significantly smaller than (0.78±0.23) cm3 of YAP-WT mice (t=-5.100, P<0.05). The expression levels of YAP, Ki67, F4/80 and CD163 in the liver tissues in LPS group were higher than those in control group. The expression levels of F4/80 and CD163 in the liver tissues of YAP-HKO mice were lower compared with those of YAP-WT mice. The percentage of M2-type macrophages in the liver tissues in LPS group was (69±3)%, significantly higher than (45±4)% in the control group (t=9.768, P<0.05). The percentage of M2-type macrophages in the liver tissues of YAP-HKO mice was (54±4)%, significantly lower than (68±7)% of YAP-WT mice (t=-3.669, P<0.05).

Conclusions

In the mouse model of orthotopically implanted liver tumor, LPS can recruit macrophages and induce M2-type macrophage polarization to promote the tumor proliferation by up-regulating the expression of YAP.

图1 小鼠肝脏移植瘤模型LPS诱导YAP表达实验组成瘤情况
图2 免疫组化法检测小鼠肝组织YAP、Ki67、F4/80、CD163表达(×400)
图3 LPS组及对照组小鼠肝组织M1、M2型巨噬细胞流式细胞术结果
图4 免疫组化法检测YAP-HKO及YAP-WT小鼠肝组织F4/80、CD163表达(×400)
[1]
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6):394-424.
[2]
Rook GA,Dalgleish A. Infection,immunoregulation,and cancer[J]. Immunol Rev, 2011, 240(1):141-159.
[3]
Chaturvedi VK, Singh A, Dubey SK, et al. Molecular mechanistic insight of hepatitis B virus mediated hepatocellular carcinoma[J]. Microb Pathog, 2019, 128(3):184-194.
[4]
Yu LX, Schwabe RF. The gut microbiome and liver cancer; mechanisms and clinical translation[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(9):527-539.
[5]
Zhou TY, Zhou YL, Qian MJ, et al. Interleukin-6 induced by YAP in hepatocellular carcinoma cells recruits tumor-associated macrophages[J]. J Pharmacol Sci, 2018, 138(2):89-95.
[6]
Zhou X, Li W, Wang S, et al. YAP aggravates inflammatory bowel disease by regulating M1/M2 macrophage polarization and gut microbial homeostasis[J]. Cell Rep, 2019, 27(4):1176-1189, e5.
[7]
Wang Z, Yan M, Li J,et al. Dual functions of STAT3 in LPS-induced angiogenesisof hepatocellular carcinoma[J]. Biochim Biophys Acta Mol Cell Res, 2019, 1866(4):566-574.
[8]
Dong YQ, Lu CW, Zhang L,et al. Toll-like receptor 4 signaling promotes invasion of hepatocellular carcinoma cells through MKK4/JNK pathway[J]. Mol Immunol, 2015, 68(2 Pt C):671-683.
[9]
Lu Y, Xu J, Chen S, et al. Lipopolysaccharide promotes angiogenesis in mice model of HCC by stimulating hepatic stellate cell activation via TLR4 pathway[J]. Acta Biochim Biophys Sin, 2017, 49(11):1029-1034.
[10]
Yi L, Huang X, Guo F, et al. Lipopolysaccharide induces human pulmonary micro-vascular endothelial apoptosis via the YAP signaling pathway[J]. Front Cell Infect Microbiol, 2016(6):133.
[11]
Wang G, Lu X, Dey P, et al. Targeting YAP-dependent MDSC infiltration impairs tumor progression[J]. Cancer Discov, 2016, 6(1): 80-95.
[12]
Fan Z, Xia H, Xu H, et al. Standard CD44 modulates YAP1 through a positive feedback loop in hepatocellular carcinoma[J]. Biomed Pharmacother, 2018, 103:147-156.
[13]
Noce V, Battistelli C, Cozzolino AM, et al.YAP integrates the regulatory Snail/HNF4α circuitry controlling epithelial/hepatocyte differentiation[J]. Cell Death Dis, 2019, 10(10):768.
[14]
Guo X, Zhao Y, Yan H, et al. Single tumor-initiating cells evade immune clearance by recruiting type II macrophages[J]. Genes Dev, 2017, 31(3):247-259.
[15]
Yang L, Zhang Y. Tumor-associated macrophages: from basic research to clinical application[J]. J Hematol Oncol, 2017, 10(1):58.
[16]
Biswas SK, Allavena P, Mantovani A. Tumor-associated macrophages: functional diversity, clinical significance, and open questions[J]. Semin Immunopathol, 2013, 35(5):585-600.
[17]
Yeung OW, Lo CM, Lin CC. et al. Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma[J]. J Hepatol, 2015, 62(3):607-616.
[18]
Huang YJ, Yang CK, Wei PL, et al. Ovatodiolide suppresses colon tumorigenesis and prevents polarization of M2 tumor-associated macrophages through YAP oncogenic pathways[J]. J Hematol Oncol, 2017, 10(1):60.
[19]
Lee PC, Machner MP. The legionella effector kinase LegK7 hijacks the host Hippo pathway to promote infection[J]. Cell Host Microbe, 2018, 24(3):429-438.
[20]
Bouhlel MA, Derudas B, Rigamonti E, et al. PPAR gamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties[J]. Cell Metab, 2007, 6(2):137-143.
[1] 陆宜仙, 张震涛, 夏德萌, 王家林. 巨噬细胞极化在骨质疏松中调控作用及机制的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 538-541.
[2] 王鹏, 肖厚安, 贾赤宇. 不同因素调控巨噬细胞极化在慢性难愈性创面中的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 454-459.
[3] 张原, 李小龙, 王亚鹏. 胰腺癌中ANGPTL2蛋白与免疫抑制细胞浸润的关系及临床意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 145-148.
[4] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[5] 张燕珍, 王锡携, 文小兰. 血清巨噬细胞迁移抑制因子对活动性肺结核分诊检测的意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 200-202.
[6] 刘燕, 叶亚萍, 郑艳莉. 干扰LINC00466通过miR-493-3p/MIF抑制子宫内膜癌RL95-2细胞恶性生物学行为[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 151-158.
[7] 沃吟晴, 杨向群. 心脏巨噬细胞的生理功能及在心肌梗死后的作用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 167-171.
[8] 刘晓梅, 张露, 刘旭, 梁蝶. 巨噬细胞迁移抑制因子靶向miR-127-3p对人肾癌细胞生物学行为的影响[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 76-83.
[9] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[10] 金艳盛, 董改琴, 李晓忠. 巨噬细胞在慢性肾脏病患者血管钙化中的作用与机制研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 234-237.
[11] 吴琼, 朱国贞. 膜性肾病中M2巨噬细胞相关基因的生物信息学分析[J]. 中华肾病研究电子杂志, 2023, 12(03): 156-162.
[12] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[13] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
[14] 梁伟, 王晓彬, 洪笑阳, 蔡明岳, 梁礼聪, 陈烨, 黄培凯, 刘铭宇, 林立腾, 朱康顺. 原位肝癌小鼠微波消融术后复发模型的构建[J]. 中华介入放射学电子杂志, 2023, 11(02): 133-139.
[15] 李世浩, 王玉姣, 李子豪, 吴彬, 盛银良, 齐宇. 单细胞转录组分析巨噬细胞帽状蛋白对食管鳞癌细胞增殖和转移的影响[J]. 中华胸部外科电子杂志, 2023, 10(02): 98-105.
阅读次数
全文


摘要