[1] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1):7-30.
|
[2] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
|
[3] |
Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods[J]. Int J Cancer, 2019, 144(8):1941-1953.
|
[4] |
Millimouno FM, Dong J, Yang L, et al. Targeting apoptosis pathways in cancer and perspectives with natural compounds from mother nature[J]. Cancer Prev Res, 2014, 7(11):1081-1107.
|
[5] |
Cragg GM, Newman DJ. Plants as a source of anti-cancer agents[J]. J Ethnopharmacol, 2005, 100(1-2):72-79.
|
[6] |
Chin YW, Balunas MJ, Chai HB, et al. Drug discovery from natural sources[J]. AAPS J, 2006, 8(2):E239-253.
|
[7] |
Balunas MJ, Kinghorn AD. Drug discovery from medicinal plants[J]. Life Sci, 2005, 78(5):431-441.
|
[8] |
Lin X, Peng Z, Su C. Potential anti-cancer activities and mechanisms of costunolide and dehydrocostuslactone[J]. Int J Mol Sci, 2015, 16(5):10888-10906.
|
[9] |
Roy A, Manikkam R. Cytotoxic impact of costunolide isolated from costus speciosus on breast cancer via differential regulation of cell cycle, an in-vitro and in-silico approach[J]. Phytother Res, 2015, 29(10):1532-1539.
|
[10] |
Hua P, Sun M, Zhang G, et al. Costunolide induces apoptosis through generation of ROS and activation of P53 in human esophageal cancer eca-109 cells[J]. J Biochem Mol Toxicol, 2016, 30(9):462-469.
|
[11] |
Hua P, Zhang G, Zhang Y, et al. Costunolide induces G1/S phase arrest and activates mitochondrial-mediated apoptotic pathways in SK-MES 1 human lung squamous carcinoma cells[J]. Oncol Lett, 2016, 11(4):2780-2786.
|
[12] |
Yan Z, Xu T, An Z, et al. Costunolide induces mitochondria-mediated apoptosis in human gastric adenocarcinoma BGC-823 cells[J]. BMC Complement Altern Med, 2019, 19(1):151.
|
[13] |
Kumar A, Singh UK, Kini SG, et al. JNK pathway signaling: a novel and smarter therapeutic targets for various biological diseases[J]. Future Med Chem, 2015, 7(15):2065-2086.
|
[14] |
Qin J, Zhou J, Teng L, et al. MicroRNA-10b promotes apoptosis via JNK pathway in clear cell renal cell carcinoma[J]. Nephron, 2018, 139(2):172-180.
|
[15] |
Shi X, Jiang B, Liu H, et al. ZCCHC9 promotes proliferation and invasion of lung cancer through regulating the JNK pathway[J].J Cell Biochem, 2019, 120(6):10596-10604.
|
[16] |
Peng Z, Wang Y, Fan J, et al. Costunolide and dehydrocostuslactone combination treatment inhibit breast cancer by inducing cell cycle arrest and apoptosis through c-Myc/p53 and AKT/14-3-3 pathway[J]. Sci Rep, 2017(7):41254.
|
[17] |
Kim JH, Yang YI, Lee KT, et al. Costunolide induces apoptosis in human endometriotic cells through inhibition of the prosurvival Akt and nuclear factor kappa B signaling pathway[J]. Biol Pharm Bull, 2011, 34(4):580-585.
|
[18] |
Cai H, He X, Yang C. Costunolide promotes imatinib-induced apoptosis in chronic myeloid leukemia cells via the Bcr/Abl-Stat5 pathway[J]. Phytother Res, 2018, 32(9):1764-1769.
|
[19] |
Dong GZ, Shim AR, Hyeon JS, et al. Inhibition of Wnt/β-Catenin pathway by dehydrocostus lactone and costunolide in colon cancer cells[J]. Phytother Res, 2015, 29(5):680-686.
|
[20] |
Collins K, Jacks T, Pavletich NP. The cell cycle and cancer[J]. Proc Natl Acad Sci U S A, 1997, 94(7):2776-2778.
|
[21] |
Graña X, Reddy EP. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs)[J]. Oncogene, 1995, 11(2):211-219.
|
[22] |
Kastan MB, Canman CE, Leonard CJ. P53, cell cycle control and apoptosis: implications for cancer[J]. Cancer Metastasis Rev, 1995, 14(1):3-15.
|
[23] |
Pavletich NP. Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors[J]. J Mol Biol, 1999, 287(5):821-828.
|
[24] |
Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression[J]. Nat Rev Cancer, 2002, 2(3):161-174.
|
[25] |
Nelson AR, Fingleton B, Rothenberg ML, et al. Matrix metalloproteinases: biologic activity and clinical implications[J].J Clin Oncol, 2000, 18(5):1135-1149.
|
[26] |
Davidson B, Goldberg I, Gotlieb WH, et al. High levels of MMP-2, MMP-9, MT1-MMP and TIMP-2 mRNA correlate with poor survival in ovarian carcinoma[J]. Clin Exp Metastasis, 1999, 17(10):799-808.
|