切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2021, Vol. 10 ›› Issue (03) : 251 -257. doi: 10.3877/cma.j.issn.2095-3232.2021.03.005

所属专题: 文献

专家论坛

患者来源的肿瘤异种移植模型在肝细胞癌中应用现状与挑战
谈得丽1, 张师容1, 徐龙文1, 朱越1, 张谞丰2, 吕毅2, 郭卉1,()   
  1. 1. 710061 西安交通大学第一附属医院肿瘤内科
    2. 710061 西安交通大学第一附属医院肝胆外科
  • 收稿日期:2021-03-19 出版日期:2021-06-10
  • 通信作者: 郭卉
  • 基金资助:
    国家自然科学基金面上项目(81672432); 博士后基金特别资助项目(2019T120920); 西安交通大学第一附属医院临床研究重点项目(XJTU1AF-CRF-2019-001)

Advances and challenges of patient-derived tumor xenograft model in hepatocellular carcinoma

Deli Tan1, Shirong Zhang1, Longwen Xu1   

  • Received:2021-03-19 Published:2021-06-10
引用本文:

谈得丽, 张师容, 徐龙文, 朱越, 张谞丰, 吕毅, 郭卉. 患者来源的肿瘤异种移植模型在肝细胞癌中应用现状与挑战[J]. 中华肝脏外科手术学电子杂志, 2021, 10(03): 251-257.

Deli Tan, Shirong Zhang, Longwen Xu. Advances and challenges of patient-derived tumor xenograft model in hepatocellular carcinoma[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2021, 10(03): 251-257.

[1]
Tang A, Hallouch O, Chernyak V, et al. Epidemiology of hepatocellular carcinoma: target population for surveillance and diagnosis[J]. Abdom Radiol, 2018, 43(1):13-25.
[2]
Tabassum DP, Polyak K. Tumorigenesis: it takes a village[J]. Nat Rev Cancer, 2015, 15(8):473-483.
[3]
Hidalgo M, Amant F, Biankin AV, et al. Patient-derived xenograft models: an emerging platform for translational cancer research[J]. Cancer Discov, 2014, 4(9):998-1013.
[4]
Blumer T, Fofana I, Matter MS, et al. Hepatocellular carcinoma xenografts established from needle biopsies preserve the characteristics of the originating tumors[J]. Hepatol Commun, 2019, 3(7):971-986.
[5]
Gu Q, Zhang B, Sun H, et al. Genomic characterization of a large panel of patient-derived hepatocellular carcinoma xenograft tumor models for preclinical development[J]. Oncotarget, 2015, 6(24): 20160-20176.
[6]
Tischfield DJ, Ackerman D, Noji M, et al. Establishment of hepatocellular carcinoma patient-derived xenografts from image-guided percutaneous biopsies[J]. Sci Rep, 2019, 9(1):10546.
[7]
Zhu M, Li L, Lu T, et al. Uncovering biological factors that regulate hepatocellular carcinoma growth using patient derived xenograft assays[J]. Hepatology, 2020, 72(3):1085-1101.
[8]
Liu J, Chen S, Zou Z, et al. Pathological pattern of intrahepatic HBV in HCC is phenocopied by PDX-derived mice: a novel model for antiviral treatment[J]. Transl Oncol, 2019, 12(9):1138-1146.
[9]
Ding Z, Shi C, Jiang L, et al. Oncogenic dependency on β-catenin in liver cancer cell lines correlates with pathway activation[J]. Oncotarget, 2017, 8(70):114526-114539.
[10]
Hu B, Li H, Guo W, et al. Establishment of a hepatocellular carcinoma patient-derived xenograft platform and its application in biomarker identification[J]. Int J Cancer, 2020, 146(6):1606-1617.
[11]
Yu H, Mei XP, Su PF, et al. A poor prognosis in human hepatocellular carcinoma is associated with low expression of DPP4[J]. Braz J Med Biol Res, 2020, 53(4):e9114.
[12]
Hu G, Zhang Y, Ouyang K, et al. In vivo acquired sorafenib-resistant patient-derived tumor model displays alternative angiogenic pathways, multi-drug resistance and chromosome instability[J]. Oncol Lett, 2018, 16(3):3439-3446.
[13]
Hu B, Cheng JW, Hu JW, et al. KPNA3 confers sorafenib resistance to advanced hepatocellular carcinoma via TWIST regulated epithelial-mesenchymal transition[J]. J Cancer, 2019, 10(17):3914-3925.
[14]
Yang S, Luo C, Gu Q, et al. Activating JAK1 mutation may predict the sensitivity of JAK-STAT inhibition in hepatocellular carcinoma[J]. Oncotarget, 2016, 7(5):5461-5469.
[15]
Tan L, Chen S, Wei G, et al. Sublethal heat treatment of hepatocellular carcinoma promotes intrahepatic metastasis and stemness in a VEGFR1-dependent manner[J]. Cancer Lett, 2019(460):29-40.
[16]
Medema JP. Cancer stem cells: the challenges ahead[J]. Nat Cell Biol, 2013, 15(4):338-344.
[17]
Zhao Q, Zhou H, Liu Q, et al. Prognostic value of the expression of cancer stem cell-related markers CD133 and CD44 in hepatocellular carcinoma: from patients to patient-derived tumor xenograft models[J]. Oncotarget, 2016, 7(30):47431-47443.
[18]
Wu CX, Wang XQ, Chok SH, et al. Blocking CDK1/PDK1/beta-catenin signaling by CDK1 inhibitor RO3306 increased the efficacy of sorafenib treatment by targeting cancer stem cells in a preclinical model of hepatocellular carcinoma[J]. Theranostics, 2018, 8(14): 3737-3750.
[19]
Cucarull B, Tutusaus A, Subías M, et al. Regorafenib alteration of the BCL-xL/MCL-1 ratio provides a therapeutic opportunity for BH3-mimetics in hepatocellular carcinoma models[J]. Cancers, 2020, 12(2):332.
[20]
Jiang Z, Jiang X, Chen S, et al. Anti-GPC3-CAR T cells suppress the growth of tumor cells in patient-derived xenografts of hepatocellular carcinoma[J]. Front Immunol, 2017(7):690.
[21]
Li X, Su Y, Sun B, et al. An artificially designed interfering lncRNA expressed by oncolytic adenovirus competitively consumes oncomiRs to exert antitumor efficacy in hepatocellular carcinoma[J]. Mol Cancer Ther, 2016, 15(7):1436-1451.
[22]
Yang CY, Wang L, Sun X, et al. SHR-A1403, a novel c-Met antibody-drug conjugate, exerts encouraging anti-tumor activity in c-Met-overexpressing models[J]. Acta Pharmacol Sin, 2019, 40(7): 971-979.
[23]
Wang H, Zhou L, Xie K, et al. Polylactide-tethered prodrugs in polymeric nanoparticles as reliable nanomedicines for the efficient eradication of patient-derived hepatocellular carcinoma[J]. Theranostics, 2018, 8(14):3949-3963.
[24]
Lv H, Wang C, Fang T, et al. Vitamin C preferentially kills cancer stem cells in hepatocellular carcinoma via SVCT-2[J]. NPJ Precis Oncol, 2018, 2(1):1.
[25]
Zhang C, Zhao Y, Zhao N, et al. NIRF optical/PET dual-modal imaging of hepatocellular carcinoma using heptamethine carbocyanine dye[J]. Contrast Media Mol Imaging, 2018:4979746.
[26]
Zhang C, Zhao Y, Zhang H, et al. The application of heptamethine cyanine dye DZ-1 and indocyanine green for imaging and targeting in xenograft models of hepatocellular carcinoma[J]. Int J Mol Sci, 2017, 18(6):1332.
[27]
Zhang Y, Tang ET, Du Z. Detection of MET gene copy number in cancer samples using the droplet digital PCR method[J]. PLoS One, 2016, 11(1): e0146784.
[28]
Rongvaux A, Willinger T, Martinek J, et al. Development and function of human innate immune cells in a humanized mouse model[J]. Nat Biotechnol, 2014, 32(4): 364-372.
[29]
Chen K, Wu Z, Zhao H, et al. XCL1/glypican-3 fusion gene immunization generates potent antitumor cellular immunity and enhances anti-PD-1 efficacy[J]. Cancer Immunol Res, 2020, 8(1):81-93.
[30]
Byrne AT, Alférez DG, Amant F, et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts[J]. Nat Rev Cancer, 2017, 17(4):254-268.
[31]
Cheung PF, Yip CW, Ng LW, et al. Comprehensive characterization of the patient-derived xenograft and the paralleled primary hepatocellular carcinoma cell line[J]. Cancer Cell Int, 2016(16):41.
[32]
Jung HR, Kang HM, Ryu JW, et al. Cell spheroids with enhanced aggressiveness to mimic human liver cancer in vitro and in vivo[J]. Sci Rep, 2017, 7(1):10499.
[33]
Fong ELS, Toh TB, Lin QXX, et al. Generation of matched patient-derived xenograft in vitro-in vivo models using 3D macroporous hydrogels for the study of liver cancer[J]. Biomaterials, 2018(159): 229-240.
[34]
DeRose YS, Wang G, Lin YC, et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes[J]. Nat Med, 2011, 17(11):1514-1520.
[35]
Ben-David U, Ha G, Tseng YY, et al. Patient-derived xenografts undergo mouse-specific tumor evolution[J]. Nat Genet, 2017, 49(11): 1567-1575.
[1] 李淼, 朱连华, 韩鹏, 姜波, 费翔. 高帧频超声造影评价肝细胞癌血管形态与风险因素的研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 911-915.
[2] 姚宏伟, 魏鹏宇, 高加勒, 张忠涛. 不断提高腹腔镜右半结肠癌D3根治术的规范化[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 1-4.
[3] 杜晓辉, 崔建新. 腹腔镜右半结肠癌D3根治术淋巴结清扫范围与策略[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 5-8.
[4] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[5] 杨倩, 李翠芳, 张婉秋. 原发性肝癌自发性破裂出血急诊TACE术后的近远期预后及影响因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 33-36.
[6] 冯冰, 邹秋果, 梁振波, 卢艳明, 曾奕, 吴淑苗. 老年非特殊型浸润性乳腺癌超声征象与分子生物学指标的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 48-51.
[7] 栗艳松, 冯会敏, 刘明超, 刘泽鹏, 姜秋霞. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 52-56.
[8] 钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.
[9] 叶晓琳, 刘云飞, 庞明泉, 王海久, 任利, 侯立朝, 于文昊, 王志鑫, 樊海宁. 肝再生细胞来源及调控机制的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 96-99.
[10] 尚培中, 张润萍, 张伟, 贾国洪, 李晓武, 苗建军, 刘冰. 梗阻性黄疸临床防治新技术单中心应用研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 104-107.
[11] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[12] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[13] 曹迪, 张玉茹. 经腹腔镜生物补片修补直肠癌根治术后盆底疝1例[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 115-116.
[14] 李永胜, 孙家和, 郭书伟, 卢义康, 刘洪洲. 高龄结直肠癌患者根治术后短期并发症及其影响因素[J]. 中华临床医师杂志(电子版), 2023, 17(9): 962-967.
[15] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
阅读次数
全文


摘要