切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2021, Vol. 10 ›› Issue (05) : 524 -529. doi: 10.3877/cma.j.issn.2095-3232.2021.05.020

所属专题: 文献

基础研究

CD31内皮细胞抗体靶向荧光成像在肝段标记中的实验研究
王庆亮1, 李晓杰2, 胡昆鹏1, 许世磊1, 林继宗1, 刘波1,()   
  1. 1. 510530 广州,中山大学附属第三医院岭南医院普通外科
    2. 510530 广州,中山大学附属第三医院岭南医院检验科
  • 收稿日期:2021-07-01 出版日期:2021-08-17
  • 通信作者: 刘波
  • 基金资助:
    广州市科技计划项目(202102010199); 中山大学高校基本科研业务费项目(19ykpy32)

Experimental study of endothelial cell-specific CD31 antibody-targeted fluorescence imaging in liver segment labeling

Qingliang Wang1, Xiaojie Li2, Kunpeng Hu1, Shilei Xu1, Jizong Lin1, Bo Liu1,()   

  1. 1. Department of General Surgery, Lingnan Hospital, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510530, China
    2. Clinical Laboratory, Lingnan Hospital, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510530, China
  • Received:2021-07-01 Published:2021-08-17
  • Corresponding author: Bo Liu
引用本文:

王庆亮, 李晓杰, 胡昆鹏, 许世磊, 林继宗, 刘波. CD31内皮细胞抗体靶向荧光成像在肝段标记中的实验研究[J]. 中华肝脏外科手术学电子杂志, 2021, 10(05): 524-529.

Qingliang Wang, Xiaojie Li, Kunpeng Hu, Shilei Xu, Jizong Lin, Bo Liu. Experimental study of endothelial cell-specific CD31 antibody-targeted fluorescence imaging in liver segment labeling[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2021, 10(05): 524-529.

目的

探讨CD31内皮细胞抗体靶向荧光成像在肝段标记中的应用价值。

方法

采用免疫荧光法筛选具有快速结合特性的内皮细胞特异性抗体CD31,使用偶联荧光染料Alexa Fluor 647(AF647)定性及定量评价CD31抗体结合特性。采用体外内皮细胞染色分析CD31荧光抗体定位、半衰期及细胞毒性。单细胞悬液模型分析CD31抗体捕获效率。离体肝脏灌注模型分析CD31抗体灌注剂量及捕获效率的关系。荧光显微镜分析灌注肝段与非灌注区差异并定量分析荧光对比度。两组CD31抗体免疫荧光染色半最大效应浓度(EC50)比较采用t检验。

结果

抗小鼠CD31抗体能在10 s与内皮细胞快速特异性结合。定量分析显示,AF647荧光标记CD31抗体后仍具有快速结合特性;AF647荧光标记CD31抗体后孵育10 s和15 min,EC50值分别为(4.23±0.86)、(0.72±0.10)μg/ml,明显高于纯抗体的(1.21±0.24)、(0.32±0.07)μg/ml(t=5.877,5.928;P<0.05)。细胞染色显示CD31荧光抗体定位于细胞膜及细胞质,半衰期为5 h,无细胞毒性;单细胞悬液结合模型显示抗体捕获效率可达80%。体外灌注模型显示CD31荧光抗体可有效被血管内皮细胞捕获,捕获效率随着抗体浓度加大呈轻度下降趋势,灌注200 ng时捕获效率可达(47±8)%,灌注区域的荧光强度可达到非灌注区的(2.4±0.5)倍。

结论

CD31内皮细胞抗体靶向荧光成像具有安全、有效、快速、特异性标记特点,是肝段标记的一种潜在应用方法。

Objective

To evaluate the application of endothelial cell-specific CD31 antibody-targeted fluorescence imaging in liver segment labeling.

Methods

The endothelial cell-specific antibody CD31 with rapid binding property was selected by immunofluorescence. The binding characteristics of CD31 antibody were qualitatively and quantitatively evaluated with coupling fluorescent dye Alexa Fluor 647 (AF647). The localization, half-life and cytotoxicity of CD31 fluorescent antibody were analyzed by endothelial cell staining in vitro. The capture efficiency of CD31 antibody was analyzed by single cell suspension model. The relationship between the perfusion dose and capture efficiency of CD31 antibody was assessed in liver perfusion model in vitro. The difference between perfused and non-perfused liver segments was analyzed under fluorescence microscope, and the fluorescence contrast was quantitatively analyzed. The concentration for 50% of maximal effect (EC50) of immunofluorescence staining of CD31 antibody were compared by t test between two groups.

Results

Anti-mouse CD31 antibody could rapidly and specifically bind to endothelial cells within 10 s. Quantitative analysis showed that AF647 labeled-CD31 antibody still possessed rapid binding characteristics. After AF647-labeled CD31 antibody was incubated for 10 s and 15 min, the EC50 were (4.23±0.86) and (0.72±0.10) μg/ml respectively, which were significantly higher than (1.21±0.24) and (0.32±0.07) μg/ml of the pure CD31 antibody (t=5.877, 5.928; P<0.05). Cell staining showed that CD31 fluorescent antibody was localized on cell membrane and in cytoplasm with a half-life of 5 h and no cytotoxicity. Single cell suspension binding model revealed that the antibody capture efficiency reached up to 80%. In vitro perfusion model showed that CD31 fluorescent antibody could be effectively captured by vascular endothelial cells, and the capture efficiency was slightly decreased with the increase of antibody concentration. The capture efficiency reached (47±8)% when the perfusion volume was 200 ng, and the fluorescence intensity in the perfused area was (2.4±0.5) times of that in the non-perfused area.

Conclusions

Endothelial cell-specific CD31 antibody-targeted fluorescence imaging is a safe, effective, rapid and specific labeling tool, which is a potential approach for liver segment labeling.

图1 抗小鼠抗体CD31间接免疫荧光染色
图2 荧光标记抗小鼠抗体CD31结合能力变化
图3 内皮细胞CD31靶向荧光成像细胞学实验
图4 肝脏灌注模型分析CD31抗体捕获效率
[1]
Hwang S, Lee YJ, Kim KH, et al. The impact of tumor size on long-term survival outcomes after resection of solitary hepatocellular carcinoma: single-institution experience with 2 558 patients[J]. J Gastrointest Surg, 2015, 19(7):1281-1290.
[2]
Waghray A, Murali AR, Menon KN. Hepatocellular carcinoma: from diagnosis to treatment[J]. World J Hepatol, 2015, 7(8):1020-1029.
[3]
Makuuchi M, Hasegawa H, Yamazaki S. Ultrasonically guided subsegmentectomy[J]. Surg Gynecol Obstet, 1985, 161(4):346-350.
[4]
Cucchetti A, Cescon M, Ercolani G, et al. A comprehensive meta-regression analysis on outcome of anatomic resection versus nonanatomic resection for hepatocellular carcinoma[J]. Ann Surg Oncol, 2012, 19(12):3697-3705.
[5]
Zhou Y, Xu D, Wu L, et al. Meta-analysis of anatomic resection versus nonanatomic resection for hepatocellular carcinoma[J]. Langenbecks Arch Surg, 2011, 396(7):1109-1117.
[6]
Jones AD, Wilton JC. Can intra-operative fluorescence playa significant role in hepatobiliary surgery?[J]. Eur J Surg Oncol, 2017, 43(9):1622-1627.
[7]
Wang X, Teh C, Ishizawa T, et al. Consensus Guidelines for the use of fluorescence imaging in hepatobiliary surgery[J]. Ann Surg, 2021, 274(1):97-106.
[8]
Nakaseko Y, Ishizawa T, Saiura A. Fluorescence-guided surgery for liver tumors[J]. J Surg Oncol, 2018, 118(2):324-331.
[9]
Majlesara A, Golriz M, Hafezi M, et al. Indocyanine green fluorescence imaging in hepatobiliary surgery[J]. Photodiagnosis Photodyn Ther, 2017(17):208-215.
[10]
Foray C, Barca C, Backhaus P, et al. Multimodal molecular imaging of the tumour microenvironment[J]. Adv Exp Med Biol, 2020(1225): 71-87.
[11]
Glukhova OE. Liposome drug delivery system across endothelial plasma membrane: role of distance between endothelial cells and blood flow rate[J]. Molecules, 2020, 25(8):1875.
[12]
Azzi S, Hebda JK, Gavard J. Vascular permeability and drug delivery in cancers[J]. Front Oncol, 2013(3):211.
[13]
Xenaki KT, Oliveira S, van Bergen EHP. Antibody or antibody fragments: implications for molecular imaging and targeted therapy of solid tumors[J]. Front Immunol, 2017(8):1287.
[14]
Fetsch PA, Abati A. The effects of antibody clone and pretreatment method on the results of HER2 immunostaining in cytologic samples of metastatic breast cancer: a query and a review of the literature[J]. Diagn Cytopathol, 2007, 35(6):319-328.
[15]
Winkler N, Strübing F, Groß W, et al. Phenomenon of endothelial antibody capture: principles and potential for locoregional targeting of hepatic tumors[J]. Hepatology, 2018, 68(5):1804-1816.
[16]
Schellenberger EA, Weissleder R, Josephson L. Optimal modification of annexin V with fluorescent dyes[J]. Chembiochem, 2004, 5(3): 271-274.
[17]
Vira S, Mekhedov E, Humphrey G, et al. Fluorescent-labeled antibodies: balancing functionality and degree of labeling[J]. Anal Biochem, 2010, 402(2):146-150.
[18]
Pasqualini R, Moeller BJ, Arap W. Leveraging molecular heterogeneity of the vascular endothelium for targeted drug delivery and imaging[J]. Semin Thromb Hemost, 2010, 36(3): 343-351.
[19]
Aoki T, Yasuda D, Shimizu Y, et al. Image-guided liver mapping using fluorescence navigation system with indocyanine green for anatomical hepatic resection[J]. World J Surg, 2008, 32(8):1763-1767.
[20]
Alander JT, Kaartinen I, Laakso A, et al. A review of indocyanine green fluorescent imaging in surgery[J]. Int J Biomed Imaging, 2012: 940585.
[21]
Ishizawa T, Fukushima N, Shibahara J, et al. Real-time identification of liver cancers by using indocyanine green fluorescent imaging[J]. Cancer, 2009, 115(11):2491-2504.
[1] 武玺宁, 欧阳云淑, 张一休, 孟华, 徐钟慧, 张培培, 吕珂. 胎儿心脏超声检查在抗SSA/Ro-SSB/La抗体阳性妊娠管理中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1056-1060.
[2] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[3] 王春荣, 陈姜, 喻晨. 循Glisson蒂鞘外解剖、Laennec膜入路腹腔镜解剖性左半肝切除术临床应用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 37-40.
[4] 索郎多杰, 高红桥, 巴桑顿珠, 仁桑. 腹腔镜下不同术式治疗肝囊型包虫病的临床疗效分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 670-673.
[5] 汤海琴, 郭秀枝, 朱晓素, 赵世娣. “隧道法”腹腔镜解剖性左半肝切除术的临床安全性研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 674-677.
[6] 唐浩, 梁平, 徐小江, 曾凯, 文拨辉. 三维重建指导下腹腔镜右半肝加尾状叶切除治疗Bismuth Ⅲa型肝门部胆管癌的临床研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 688-692.
[7] 陈忠垚, 陈胜灯, 李秋. 不同手术时机对原发性肝癌自发破裂出血患者远期预后的影响[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 518-521.
[8] 李婷婷, 吴荷玉, 张悦, 程康, 张晓芳, 程娅婵. 复合保温策略在老年腹腔镜解剖性肝切除术中的应用研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 522-525.
[9] 王兴, 张峰伟. 腹腔镜肝切除联合断面射频消融治疗伴微血管侵犯肝细胞癌的临床研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 580-583.
[10] 段文忠, 白延霞, 徐文亭, 祁虹霞, 吕志坚. 七氟烷和丙泊酚在肝切除术中麻醉效果比较Meta分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 640-645.
[11] 唐灿, 李向阳, 秦浩然, 李婧, 王天云, 柯阳, 朱红. 原发性肝脏神经内分泌肿瘤单中心12例诊治与疗效分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 674-680.
[12] 张立鑫, 朱建交, 李敬东. 机器人肝切除技术的优势与劣势[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 477-479.
[13] 马俊永, 王毅州, 李锡锋, 吴雅丽, 张小峰. 浅谈腹腔镜肝切除术出血防控策略[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 495-498.
[14] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[15] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
阅读次数
全文


摘要