切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2023, Vol. 12 ›› Issue (04) : 367 -371. doi: 10.3877/cma.j.issn.2095-3232.2023.04.002

所属专题: 述评与论坛

专家论坛

人工智能在原发性肝癌诊断、治疗及预后中的应用
葛云鹏, 崔红元, 宋京海()   
  1. 100730 北京医院普通外科(肝胆胰外科) 国家老年医学中心 中国医学科学院老年医学研究院
  • 收稿日期:2023-03-08 出版日期:2023-08-10
  • 通信作者: 宋京海
  • 基金资助:
    北京市优秀人才培养资助青年骨干个人项目(2018000032600G394)

Application of artificial intelligence in diagnosis, treatment and prognosis of primary liver cancer

Yunpeng Ge, Hongyuan Cui, Jinghai Song()   

  • Received:2023-03-08 Published:2023-08-10
  • Corresponding author: Jinghai Song
引用本文:

葛云鹏, 崔红元, 宋京海. 人工智能在原发性肝癌诊断、治疗及预后中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 367-371.

Yunpeng Ge, Hongyuan Cui, Jinghai Song. Application of artificial intelligence in diagnosis, treatment and prognosis of primary liver cancer[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2023, 12(04): 367-371.

原发性肝癌(肝癌)是全球第六大常见恶性肿瘤,在恶性肿瘤年死亡人数中排第四位。肝癌发病率最高的地区是东亚、东南亚和北非。在韩国,肝癌是癌症死亡的第二大常见原因,每年约有16 000例患者确诊肝癌,11 000例患者死于肝癌[1]。随着肝癌诊断技术的不断提升以及治疗模式的多样化,2000~2015年肝癌1年生存率从36.3%增加到58.1%,5年生存率几乎翻了一倍,从11.7%增加到21.3%[2]。肝癌的诊断主要依赖于患者症状体征、影像学检查、血清AFP水平和病理学诊断。目前肝癌的治疗主要分为手术治疗与非手术治疗,前者包括解剖性肝切除、肝肿瘤局部切除术、肝移植术,后者包括射频消融治疗、介入栓塞化疗、立体定向或粒子植入放射治疗、靶向治疗、免疫治疗等[3]。近年来,以基于大数据的机器学习、决策树算法等技术为依托的人工智能(artificial intelligence,AI)技术在肝癌的诊断、治疗以及诊疗决策中发挥巨大作用[4]。本文就AI在肝癌诊断、治疗及预后中的应用作一综述。

[1]
Kim BH, Lee D, Jung KW, et al. Cause of death and cause-specific mortality in primary liver cancer in Korea: a nationwide population-based study in hepatitis B virus endemic area[J]. Clin Mol Hepatol, 2022, 28(2):242-253.
[2]
Lee YT, Wang JJ, Luu M, et al. The mortality and overall survival trends of primary liver cancer in the United States[J]. J Natl Cancer Inst, 2021, 113(11):1531-1541.
[3]
宗静静, 卿鑫, 樊哲, 等. 原发性肝癌治疗进展[J]. 东南大学学报(医学版), 2021, 40(4):542-547.
[4]
Jain A, Nadeem A, Majdi Altoukhi H, et al. Personalized liver cancer risk prediction using big data analytics techniques with image processing segmentation[J]. Comput Intell Neurosci, 2022:8154523.
[5]
Sun C, Li R, Song Y, et al. Ultrasensitive and reliable organic field-effect transistor-based biosensors in early liver cancer diagnosis[J]. Anal Chem, 2021, 93(15):6188-6194.
[6]
Makrodimitris S, van Ham RCHJ, Reinders MJT. Automatic gene function prediction in the 2020's[J]. Genes, 2020, 11(11):1264.
[7]
Mahalingam D, Chelis L, Nizamuddin I, et al. Detection of hepatocellular carcinoma in a high-risk population by a mass spectrometry-based test[J]. Cancers, 2021, 13(13):3109.
[8]
Hashem S, Elhefnawi M, Habashy S, et al. Machine learning prediction models for diagnosing hepatocellular carcinoma with HCV-related chronic liver disease[J]. Comput Methods Programs Biomed, 2020(196):105551.
[9]
解添淞, 周正荣. 人工智能及影像组学在腹部肿瘤中的应用进展[J]. 中华放射学杂志, 2020, 54(4):376-377.
[10]
Zeng X, Chen S. Research on ultrasonic image recognition based on optimization immune algorithm[J]. Comput Math Methods Med, 2021:5868949.
[11]
Zhang Y, Cui J, Wan W, et al. Multimodal imaging under artificial intelligence algorithm for the diagnosis of liver cancer and its relationship with expressions of EZH2 and p57[J]. Comput Intell Neurosci, 2022:4081654.
[12]
Sato M, Kobayashi T, Soroida Y, et al. Development of novel deep multimodal representation learning-based model for the differentiation of liver tumors on B-mode ultrasound images[J]. J Gastroenterol Hepatol, 2022, 37(4):678-684.
[13]
Chou TH, Yeh HJ, Chang CC, et al. Deep learning for abdominal ultrasound: a computer-aided diagnostic system for the severity of fatty liver[J]. J Chin Med Assoc, 2021, 84(9):842-850.
[14]
Kaga T, Noda Y, Fujimoto K, et al. Deep-learning-based image reconstruction in dynamic contrast-enhanced abdominal CT: image quality and lesion detection among reconstruction strength levels[J]. Clin Radiol, 2021, 76(9):710-715.
[15]
Kim DW, Lee G, Kim SY, et al. Deep learning-based algorithm to detect primary hepatic malignancy in multiphase CT of patients at high risk for HCC[J]. Eur Radiol, 2021, 31(9):7047-7057.
[16]
Wang M, Fu F, Zheng B, et al. Development of an AI system for accurately diagnose hepatocellular carcinoma from computed tomography imaging data[J]. Br J Cancer, 2021, 125(8):1111-1121.
[17]
Gao R, Zhao S, Aishanjiang K, et al. Deep learning for differential diagnosis of malignant hepatic tumors based on multi-phase contrast-enhanced CT and clinical data[J]. J Hematol Oncol, 2021, 14(1):154.
[18]
Ichikawa S, Isoda H, Shimizu T, et al. Distinguishing intrahepatic mass-forming biliary carcinomas from hepatocellular carcinoma by computed tomography and magnetic resonance imaging using the Bayesian method: a bi-center study[J]. Eur Radiol, 2020, 30(11): 5992-6002.
[19]
Wang X, Wang S, Yin X, et al. MRI-based radiomics distinguish different pathological types of hepatocellular carcinoma[J]. Comput Biol Med, 2022(141):105058.
[20]
Song D, Wang Y, Wang W, et al. Using deep learning to predict microvascular invasion in hepatocellular carcinoma based on dynamic contrast-enhanced MRI combined with clinical parameters[J]. J Cancer Res Clin Oncol, 2021, 147(12):3757-3767.
[21]
Jiang YQ, Cao SE, Cao S, et al. Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning[J]. J Cancer Res Clin Oncol, 2021, 147(3):821-833.
[22]
郑俣萱. 结合细粒度特征学习的病理图像分类模型研究与实现[D]. 西安: 西安电子科技大学, 2021.
[23]
Aatresh AA, Alabhya K, Lal S, et al. LiverNet: efficient and robust deep learning model for automatic diagnosis of sub-types of liver hepatocellular carcinoma cancer from H&E stained liver histopathology images[J]. Int J Comput Assist Radiol Surg, 2021, 16(9):1549-1563.
[24]
Wang R, He Y, Yao C, et al. Classification and segmentation of hyperspectral data of hepatocellular carcinoma samples using 1-D convolutional neural network[J]. Cytometry A, 2020, 97(1):31-38.
[25]
王炯亮, 李文轩, 陈敏山, 等. 人工智能在肝细胞癌研究的应用现状与前景[J]. 中华医学杂志, 2021, 101(6):435-441.
[26]
刘红枝, 刘景丰. 人工智能在原发性肝癌外科治疗中的应用现状与展望[J]. 临床肝胆病杂志, 2022, 38(1):10-14.
[27]
Wang S, Ye Z, Pan Z, et al. "Shared decision making assistant": a smartphone application to meet the decision-making needs of patients with primary liver cancer[J]. Comput Inform Nurs, 2021, 39(12):984-991.
[28]
Mojtahed A, Núñez L, Connell J, et al. Repeatability and reproducibility of deep-learning-based liver volume and Couinaud segment volume measurement tool[J]. Abdom Radiol, 2022, 47(1):143-151.
[29]
Mai RY, Lu HZ, Bai T, et al. Artificial neural network model for preoperative prediction of severe liver failure after hemihepatectomy in patients with hepatocellular carcinoma[J]. Surgery, 2020, 168(4):643-652.
[30]
Zhang T, Wei Y, He X, et al. Prediction of remnant liver regeneration after right hepatectomy in patients with hepatocellular carcinoma using preoperative CT texture analysis and clinical features[J]. Contrast Media Mol Imaging, 2021:5572470.
[31]
Madani A, Namazi B, Altieri MS, et al. Artificial intelligence for intraoperative guidance: using semantic segmentation to identify surgical anatomy during laparoscopic cholecystectomy[J]. Ann Surg, 2022, 276(2):363-369.
[32]
Tokuyasu T, Iwashita Y, Matsunobu Y, et al. Development of an artificial intelligence system using deep learning to indicate anatomical landmarks during laparoscopic cholecystectomy[J]. Surg Endosc, 2021, 35(4):1651-1658.
[33]
Felli E, Al-Taher M, Collins T, et al. Automatic liver viability scoring with deep learning and hyperspectral imaging[J]. Diagnostics, 2021, 11(9):1527.
[34]
Giannone F, Felli E, Cherkaoui Z, et al. Augmented reality and image-guided robotic liver surgery[J]. Cancers, 2021, 13(24):6268.
[35]
Liu X, Plishker W, Kane TD, et al. Preclinical evaluation of ultrasound-augmented needle navigation for laparoscopic liver ablation[J]. Int J Comput Assist Radiol Surg, 2020, 15(5):803-810.
[36]
Solbiati M, Ierace T, Muglia R, et al. Thermal ablation of liver tumors guided by augmented reality: an initial clinical experience[J]. Cancers, 2022, 14(5):1312.
[37]
Boldanova T, Fucile G, Vosshenrich J, et al. Supervised learning based on tumor imaging and biopsy transcriptomics predicts response of hepatocellular carcinoma to transarterial chemoembolization[J]. Cell Rep Med, 2021, 2(11):100444.
[38]
Abuhelwa AY, Badaoui S, Yuen HY, et al. A clinical scoring tool validated with machine learning for predicting severe hand-foot syndrome from sorafenib in hepatocellular carcinoma[J]. Cancer Chemother Pharmacol, 2022, 89(4):479-485.
[39]
Zeng J, Zeng J, Lin K, et al. Development of a machine learning model to predict early recurrence for hepatocellular carcinoma after curative resection[J]. Hepatobiliary Surg Nutr, 2022, 11(2):176-187.
[40]
Ji GW, Fan Y, Sun DW, et al. Machine learning to improve prognosis prediction of early hepatocellular carcinoma after surgical resection[J]. J Hepatocell Carcinoma, 2021(8):913-923.
[41]
Qian X, Zheng H, Xue K, et al. Recurrence risk of liver cancer post-hepatectomy using machine learning and study of correlation with immune infiltration[J]. Front Genet, 2021(12):733654.
[42]
Tohme S, Yazdani HO, Rahman A, et al. The use of machine learning to create a risk score to predict survival in patients with hepatocellular carcinoma: a TCGA cohort analysis[J]. Can J Gastroenterol Hepatol, 2021:5212953.
[43]
Lee IC, Huang JY, Chen TC, et al. Evolutionary learning-derived clinical-radiomic models for predicting early recurrence of hepatocellular carcinoma after resection[J]. Liver Cancer, 2021, 10(6):572-582.
[1] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[2] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[3] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[4] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[5] 杨倩, 李翠芳, 张婉秋. 原发性肝癌自发性破裂出血急诊TACE术后的近远期预后及影响因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 33-36.
[6] 栗艳松, 冯会敏, 刘明超, 刘泽鹏, 姜秋霞. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 52-56.
[7] 郭震天, 张宗明, 赵月, 刘立民, 张翀, 刘卓, 齐晖, 田坤. 机器学习算法预测老年急性胆囊炎术后住院时间探索[J]. 中华临床医师杂志(电子版), 2023, 17(9): 955-961.
[8] 李永胜, 孙家和, 郭书伟, 卢义康, 刘洪洲. 高龄结直肠癌患者根治术后短期并发症及其影响因素[J]. 中华临床医师杂志(电子版), 2023, 17(9): 962-967.
[9] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[10] 王军, 刘鲲鹏, 姚兰, 张华, 魏越, 索利斌, 陈骏, 苗成利, 罗成华. 腹膜后肿瘤切除术中大量输血患者的麻醉管理特点与分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 844-849.
[11] 陆志峰, 周佳佳, 梁舒. 虚拟现实技术在治疗弱视中的临床应用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 891-895.
[12] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[13] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
[14] 索利斌, 刘鲲鹏, 姚兰, 张华, 魏越, 王军, 陈骏, 苗成利, 罗成华. 原发性腹膜后副神经节瘤切除术麻醉管理的特点和分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 771-776.
[15] 周婷, 孙培培, 张二明, 安欣华, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病诊断现状调查[J]. 中华临床医师杂志(电子版), 2023, 17(07): 790-797.
阅读次数
全文


摘要