切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2023, Vol. 12 ›› Issue (04) : 367 -371. doi: 10.3877/cma.j.issn.2095-3232.2023.04.002

所属专题: 述评 综述

专家论坛

人工智能在原发性肝癌诊断、治疗及预后中的应用
葛云鹏, 崔红元, 宋京海()   
  1. 100730 北京医院普通外科(肝胆胰外科) 国家老年医学中心 中国医学科学院老年医学研究院
  • 收稿日期:2023-03-08 出版日期:2023-08-10
  • 通信作者: 宋京海
  • 基金资助:
    北京市优秀人才培养资助青年骨干个人项目(2018000032600G394)

Application of artificial intelligence in diagnosis, treatment and prognosis of primary liver cancer

Yunpeng Ge, Hongyuan Cui, Jinghai Song()   

  • Received:2023-03-08 Published:2023-08-10
  • Corresponding author: Jinghai Song
引用本文:

葛云鹏, 崔红元, 宋京海. 人工智能在原发性肝癌诊断、治疗及预后中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 367-371.

Yunpeng Ge, Hongyuan Cui, Jinghai Song. Application of artificial intelligence in diagnosis, treatment and prognosis of primary liver cancer[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2023, 12(04): 367-371.

原发性肝癌(肝癌)是全球第六大常见恶性肿瘤,在恶性肿瘤年死亡人数中排第四位。肝癌发病率最高的地区是东亚、东南亚和北非。在韩国,肝癌是癌症死亡的第二大常见原因,每年约有16 000例患者确诊肝癌,11 000例患者死于肝癌[1]。随着肝癌诊断技术的不断提升以及治疗模式的多样化,2000~2015年肝癌1年生存率从36.3%增加到58.1%,5年生存率几乎翻了一倍,从11.7%增加到21.3%[2]。肝癌的诊断主要依赖于患者症状体征、影像学检查、血清AFP水平和病理学诊断。目前肝癌的治疗主要分为手术治疗与非手术治疗,前者包括解剖性肝切除、肝肿瘤局部切除术、肝移植术,后者包括射频消融治疗、介入栓塞化疗、立体定向或粒子植入放射治疗、靶向治疗、免疫治疗等[3]。近年来,以基于大数据的机器学习、决策树算法等技术为依托的人工智能(artificial intelligence,AI)技术在肝癌的诊断、治疗以及诊疗决策中发挥巨大作用[4]。本文就AI在肝癌诊断、治疗及预后中的应用作一综述。

[1]
Kim BH, Lee D, Jung KW, et al. Cause of death and cause-specific mortality in primary liver cancer in Korea: a nationwide population-based study in hepatitis B virus endemic area[J]. Clin Mol Hepatol, 2022, 28(2):242-253.
[2]
Lee YT, Wang JJ, Luu M, et al. The mortality and overall survival trends of primary liver cancer in the United States[J]. J Natl Cancer Inst, 2021, 113(11):1531-1541.
[3]
宗静静, 卿鑫, 樊哲, 等. 原发性肝癌治疗进展[J]. 东南大学学报(医学版), 2021, 40(4):542-547.
[4]
Jain A, Nadeem A, Majdi Altoukhi H, et al. Personalized liver cancer risk prediction using big data analytics techniques with image processing segmentation[J]. Comput Intell Neurosci, 2022:8154523.
[5]
Sun C, Li R, Song Y, et al. Ultrasensitive and reliable organic field-effect transistor-based biosensors in early liver cancer diagnosis[J]. Anal Chem, 2021, 93(15):6188-6194.
[6]
Makrodimitris S, van Ham RCHJ, Reinders MJT. Automatic gene function prediction in the 2020's[J]. Genes, 2020, 11(11):1264.
[7]
Mahalingam D, Chelis L, Nizamuddin I, et al. Detection of hepatocellular carcinoma in a high-risk population by a mass spectrometry-based test[J]. Cancers, 2021, 13(13):3109.
[8]
Hashem S, Elhefnawi M, Habashy S, et al. Machine learning prediction models for diagnosing hepatocellular carcinoma with HCV-related chronic liver disease[J]. Comput Methods Programs Biomed, 2020(196):105551.
[9]
解添淞, 周正荣. 人工智能及影像组学在腹部肿瘤中的应用进展[J]. 中华放射学杂志, 2020, 54(4):376-377.
[10]
Zeng X, Chen S. Research on ultrasonic image recognition based on optimization immune algorithm[J]. Comput Math Methods Med, 2021:5868949.
[11]
Zhang Y, Cui J, Wan W, et al. Multimodal imaging under artificial intelligence algorithm for the diagnosis of liver cancer and its relationship with expressions of EZH2 and p57[J]. Comput Intell Neurosci, 2022:4081654.
[12]
Sato M, Kobayashi T, Soroida Y, et al. Development of novel deep multimodal representation learning-based model for the differentiation of liver tumors on B-mode ultrasound images[J]. J Gastroenterol Hepatol, 2022, 37(4):678-684.
[13]
Chou TH, Yeh HJ, Chang CC, et al. Deep learning for abdominal ultrasound: a computer-aided diagnostic system for the severity of fatty liver[J]. J Chin Med Assoc, 2021, 84(9):842-850.
[14]
Kaga T, Noda Y, Fujimoto K, et al. Deep-learning-based image reconstruction in dynamic contrast-enhanced abdominal CT: image quality and lesion detection among reconstruction strength levels[J]. Clin Radiol, 2021, 76(9):710-715.
[15]
Kim DW, Lee G, Kim SY, et al. Deep learning-based algorithm to detect primary hepatic malignancy in multiphase CT of patients at high risk for HCC[J]. Eur Radiol, 2021, 31(9):7047-7057.
[16]
Wang M, Fu F, Zheng B, et al. Development of an AI system for accurately diagnose hepatocellular carcinoma from computed tomography imaging data[J]. Br J Cancer, 2021, 125(8):1111-1121.
[17]
Gao R, Zhao S, Aishanjiang K, et al. Deep learning for differential diagnosis of malignant hepatic tumors based on multi-phase contrast-enhanced CT and clinical data[J]. J Hematol Oncol, 2021, 14(1):154.
[18]
Ichikawa S, Isoda H, Shimizu T, et al. Distinguishing intrahepatic mass-forming biliary carcinomas from hepatocellular carcinoma by computed tomography and magnetic resonance imaging using the Bayesian method: a bi-center study[J]. Eur Radiol, 2020, 30(11): 5992-6002.
[19]
Wang X, Wang S, Yin X, et al. MRI-based radiomics distinguish different pathological types of hepatocellular carcinoma[J]. Comput Biol Med, 2022(141):105058.
[20]
Song D, Wang Y, Wang W, et al. Using deep learning to predict microvascular invasion in hepatocellular carcinoma based on dynamic contrast-enhanced MRI combined with clinical parameters[J]. J Cancer Res Clin Oncol, 2021, 147(12):3757-3767.
[21]
Jiang YQ, Cao SE, Cao S, et al. Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning[J]. J Cancer Res Clin Oncol, 2021, 147(3):821-833.
[22]
郑俣萱. 结合细粒度特征学习的病理图像分类模型研究与实现[D]. 西安: 西安电子科技大学, 2021.
[23]
Aatresh AA, Alabhya K, Lal S, et al. LiverNet: efficient and robust deep learning model for automatic diagnosis of sub-types of liver hepatocellular carcinoma cancer from H&E stained liver histopathology images[J]. Int J Comput Assist Radiol Surg, 2021, 16(9):1549-1563.
[24]
Wang R, He Y, Yao C, et al. Classification and segmentation of hyperspectral data of hepatocellular carcinoma samples using 1-D convolutional neural network[J]. Cytometry A, 2020, 97(1):31-38.
[25]
王炯亮, 李文轩, 陈敏山, 等. 人工智能在肝细胞癌研究的应用现状与前景[J]. 中华医学杂志, 2021, 101(6):435-441.
[26]
刘红枝, 刘景丰. 人工智能在原发性肝癌外科治疗中的应用现状与展望[J]. 临床肝胆病杂志, 2022, 38(1):10-14.
[27]
Wang S, Ye Z, Pan Z, et al. "Shared decision making assistant": a smartphone application to meet the decision-making needs of patients with primary liver cancer[J]. Comput Inform Nurs, 2021, 39(12):984-991.
[28]
Mojtahed A, Núñez L, Connell J, et al. Repeatability and reproducibility of deep-learning-based liver volume and Couinaud segment volume measurement tool[J]. Abdom Radiol, 2022, 47(1):143-151.
[29]
Mai RY, Lu HZ, Bai T, et al. Artificial neural network model for preoperative prediction of severe liver failure after hemihepatectomy in patients with hepatocellular carcinoma[J]. Surgery, 2020, 168(4):643-652.
[30]
Zhang T, Wei Y, He X, et al. Prediction of remnant liver regeneration after right hepatectomy in patients with hepatocellular carcinoma using preoperative CT texture analysis and clinical features[J]. Contrast Media Mol Imaging, 2021:5572470.
[31]
Madani A, Namazi B, Altieri MS, et al. Artificial intelligence for intraoperative guidance: using semantic segmentation to identify surgical anatomy during laparoscopic cholecystectomy[J]. Ann Surg, 2022, 276(2):363-369.
[32]
Tokuyasu T, Iwashita Y, Matsunobu Y, et al. Development of an artificial intelligence system using deep learning to indicate anatomical landmarks during laparoscopic cholecystectomy[J]. Surg Endosc, 2021, 35(4):1651-1658.
[33]
Felli E, Al-Taher M, Collins T, et al. Automatic liver viability scoring with deep learning and hyperspectral imaging[J]. Diagnostics, 2021, 11(9):1527.
[34]
Giannone F, Felli E, Cherkaoui Z, et al. Augmented reality and image-guided robotic liver surgery[J]. Cancers, 2021, 13(24):6268.
[35]
Liu X, Plishker W, Kane TD, et al. Preclinical evaluation of ultrasound-augmented needle navigation for laparoscopic liver ablation[J]. Int J Comput Assist Radiol Surg, 2020, 15(5):803-810.
[36]
Solbiati M, Ierace T, Muglia R, et al. Thermal ablation of liver tumors guided by augmented reality: an initial clinical experience[J]. Cancers, 2022, 14(5):1312.
[37]
Boldanova T, Fucile G, Vosshenrich J, et al. Supervised learning based on tumor imaging and biopsy transcriptomics predicts response of hepatocellular carcinoma to transarterial chemoembolization[J]. Cell Rep Med, 2021, 2(11):100444.
[38]
Abuhelwa AY, Badaoui S, Yuen HY, et al. A clinical scoring tool validated with machine learning for predicting severe hand-foot syndrome from sorafenib in hepatocellular carcinoma[J]. Cancer Chemother Pharmacol, 2022, 89(4):479-485.
[39]
Zeng J, Zeng J, Lin K, et al. Development of a machine learning model to predict early recurrence for hepatocellular carcinoma after curative resection[J]. Hepatobiliary Surg Nutr, 2022, 11(2):176-187.
[40]
Ji GW, Fan Y, Sun DW, et al. Machine learning to improve prognosis prediction of early hepatocellular carcinoma after surgical resection[J]. J Hepatocell Carcinoma, 2021(8):913-923.
[41]
Qian X, Zheng H, Xue K, et al. Recurrence risk of liver cancer post-hepatectomy using machine learning and study of correlation with immune infiltration[J]. Front Genet, 2021(12):733654.
[42]
Tohme S, Yazdani HO, Rahman A, et al. The use of machine learning to create a risk score to predict survival in patients with hepatocellular carcinoma: a TCGA cohort analysis[J]. Can J Gastroenterol Hepatol, 2021:5212953.
[43]
Lee IC, Huang JY, Chen TC, et al. Evolutionary learning-derived clinical-radiomic models for predicting early recurrence of hepatocellular carcinoma after resection[J]. Liver Cancer, 2021, 10(6):572-582.
[1] 王亚红, 蔡胜, 葛志通, 杨筱, 李建初. 颅骨骨膜窦的超声表现一例[J/OL]. 中华医学超声杂志(电子版), 2024, 21(11): 1089-1091.
[2] 史学兵, 谢迎东, 谢霓, 徐超丽, 杨斌, 孙帼. 声辐射力弹性成像对不可切除肝细胞癌门静脉癌栓患者放射治疗效果的评价[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 778-784.
[3] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[4] 李华志, 曹广, 刘殿刚, 张雅静. 不同入路下行肝切除术治疗原发性肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 52-55.
[5] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[6] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
[7] 陈浩, 王萌. 胃印戒细胞癌的临床病理特征及治疗选择的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 108-111.
[8] 刘柏隆, 周祥福. 压力性尿失禁阶梯治疗的项目介绍[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 125-125.
[9] 刘柏隆. 女性压力性尿失禁阶梯治疗之手术治疗方案选择[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 126-126.
[10] 王景明, 王磊, 许小多, 邢文强, 张兆岩, 黄伟敏. 腰椎椎旁肌的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 846-852.
[11] 李浩, 陈棋帅, 费发珠, 张宁伟, 李元东, 王硕晨, 任宾. 慢性肝病肝纤维化无创诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 863-867.
[12] 广东省护士协会介入护士分会, 广东省医师协会介入医师分会. 原发性肝癌低血糖患者护理规范管理专家共识[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 709-714.
[13] 谭瑞义. 小细胞骨肉瘤诊断及治疗研究现状与进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 781-784.
[14] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
[15] 崔军威, 蔡华丽, 胡艺冰, 胡慧. 亚甲蓝联合金属定位夹及定位钩针标记在乳腺癌辅助化疗后评估腋窝转移淋巴结的临床应用价值探究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 625-632.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?