切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2024, Vol. 13 ›› Issue (01) : 96 -99. doi: 10.3877/cma.j.issn.2095-3232.2024.01.019

综述

缺血-再灌注损伤促进肝癌复发机制的研究进展
史亚波, 李扬, 黄长文()   
  1. 330006 南昌大学医学院
    511500 广东省清远市,广州医科大学附属第六医院(清远市人民医院)肝胆胰脾外科
  • 收稿日期:2023-10-04 出版日期:2024-02-10
  • 通信作者: 黄长文

Research advances in mechanism of the role of ischemia-reperfusion injury in promoting recurrence of hepatocellular carcinoma

Yabo Shi, Yang Li, Changwen Huang()   

  1. Nanchang University Medical College, Nanchang 330006, China
    Department of Hepatobiliary, Pancreatic and Spleen Surgery, the Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan 511500, China
  • Received:2023-10-04 Published:2024-02-10
  • Corresponding author: Changwen Huang
引用本文:

史亚波, 李扬, 黄长文. 缺血-再灌注损伤促进肝癌复发机制的研究进展[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 96-99.

Yabo Shi, Yang Li, Changwen Huang. Research advances in mechanism of the role of ischemia-reperfusion injury in promoting recurrence of hepatocellular carcinoma[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2024, 13(01): 96-99.

肝细胞癌(肝癌)是最常见的原发性肝癌。手术切除、肝移植等外科手段仍是治疗肝癌最有效的治疗方案。术中为了防止出血,阻断肝门部血供是大部分肝癌手术中的必要手段,血流阻断所致的缺血-再灌注损伤(IRI)与肝癌复发密切相关。IRI对于肝癌术后复发的影响主要与活性氧自由基、炎症因子、一氧化氮、热休克蛋白、铁死亡、Kupffer细胞、蛋白酶等多种因素有关。

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Surgical resection, liver transplantation and other surgical regimens remain the most effective treatments for HCC. To prevent the intraoperative bleeding, it is necessary to occlude the blood supply at the hilum during most HCC surgeries. Ischemia-reperfusion injury (IRI) caused by blood flow occlusion is intimately associated with the recurrence of HCC. The effect of IRI on postoperative recurrence of HCC is mainly correlated with reactive oxygen species, inflammatory cytokines, nitric oxide, heat shock protein, ferroptosis, Kupffer cells and protease, etc.

[1]
Wang D, Zheng X, Fu B, et al. Hepatectomy promotes recurrence of liver cancer by enhancing IL-11-STAT3 signaling[J]. EBioMedicine, 2019(46):119-132.
[2]
Chen H, Lu D, Yang X, et al. One shoot, two birds: alleviating inflammation caused by ischemia/reperfusion injury to reduce the recurrence of hepatocellular carcinoma[J]. Front Immunol, 2022(13):879552.
[3]
Cannito S, Turato C, Paternostro C, et al. Hypoxia up-regulates SERPINB3 through HIF-2α in human liver cancer cells[J]. Oncotarget, 2015, 6(4):2206-2221.
[4]
Mu H, Yu G, Li H, et al. Mild chronic hypoxia-induced HIF-2α interacts with c-MYC through competition with HIF-1α to induce hepatocellular carcinoma cell proliferation[J]. Cell Oncol, 2021, 44(5):1151-1166.
[5]
Turato C, Vairetti M, Cagna M, et al. SerpinB3 administration protects liver against ischemia-reperfusion injury[J]. Eur J Histochem, 2022, 66(4):3561.
[6]
Kung-Chun Chiu D, Pui-Wah Tse A, Law C T, et al. Hypoxia regulates the mitochondrial activity of hepatocellular carcinoma cells through HIF/HEY1/PINK1 pathway[J]. Cell Death Dis, 2019, 10(12):934.
[7]
Chang H, Li J, Qu K, et al. CRIF1 overexpression facilitates tumor growth and metastasis through inducing ROS/NF-κB pathway in hepatocellular carcinoma[J]. Cell Death Dis, 2020, 11(5):332.
[8]
Luis G, Godfroid A, Nishiumi S, et al. Tumor resistance to ferroptosis driven by Stearoyl-CoA Desaturase-1 (SCD1) in cancer cells and Fatty Acid Biding Protein-4 (FABP4) in tumor microenvironment promote tumor recurrence[J]. Redox Biol, 2021(43):102006.
[9]
Matsumoto K, Satoh Y, Sugo H, et al. Immunohistochemical study of the relationship between 8-hydroxy-2'-deoxyguanosine levels in noncancerous region and postoperative recurrence of hepatocellular carcinoma in remnant liver[J]. Hepatol Res, 2003, 25(4):435-441.
[10]
Yugawa K, Itoh S, Yoshizumi T, et al. Prognostic impact of 8-hydroxy-deoxyguanosine and its repair enzyme 8-hydroxy-deoxyguanosine DNA glycosylase in hepatocellular carcinoma[J]. Pathol Int, 2020, 70(8):533-541.
[11]
Pang L, Yeung OWH, Ng KTP, et al. Postoperative plasmacytoid dendritic cells secrete IFNα to promote recruitment of myeloid-derived suppressor cells and drive hepatocellular carcinoma recurrence[J]. Cancer Res, 2022, 82(22):4206-4218.
[12]
陶璇, 王斌, 陈虹, 等. 肝细胞癌中精氨酸酶1和诱导型一氧化氮合成酶表达的临床意义及其相关性研究[J]. 中华肝脏病杂志, 2020, 28(11):924-929.
[13]
Sun MH, Han XC, Jia MK, et al. Expressions of inducible nitric oxide synthase and matrix metalloproteinase-9 and their effects on angiogenesis and progression of hepatocellular carcinoma[J]. World J Gastroenterol, 2005, 11(38):5931-5937.
[14]
Yu H, Lin L, Zhang Z, et al. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study[J]. Signal Transduct Target Ther, 2020, 5(1):209.
[15]
Yokoo H, Yasuda J, Nakanishi K, et al. Clinicopathological significance of nuclear factor-κB activation in hepatocellular carcinoma[J]. Hepatol Res, 2011, 41(3):240-249.
[16]
Pocino K, Stefanile A, Basile V, et al. Cytokines and hepatocellular carcinoma: biomarkers of a deadly embrace[J]. J Pers Med, 2022, 13(1):5.
[17]
Iwahasi S, Rui F, Morine Y, et al. Hepatic stellate cells contribute to the tumor malignancy of hepatocellular carcinoma through the IL-6 pathway[J]. Anticancer Res, 2020, 40(2):743-749.
[18]
皮丽娜, 候艳莹, 张维. 肠道菌群失调、炎症因子变化、维生素缺乏与肝癌患者根治术后复发的关系[J]. 现代肿瘤医学, 2019, 27(17):3078-3081.
[19]
Zhang M, Zhang S, Yang Z, et al. Association between the expression levels of IL-6 and IL-6R in the hepatocellular carcinoma microenvironment and postoperative recurrence[J]. Oncol Lett, 2018, 16(6):7158-7165.
[20]
Yang Z, Zhuang L, Szatmary P, et al. Upregulation of heat shock proteins (HSPA12A, HSP90B1, HSPA4, HSPA5 and HSPA6) in tumour tissues is associated with poor outcomes from HBV-related early-stage hepatocellular carcinoma[J]. Int J Med Sci, 2015, 12(3):256-263.
[21]
刘金钢, 李岩, 刘丹, 等. HSP70与PI3K/Akt信号通路在肝细胞肝癌组织中的表达及意义[J/OL]. 中华肝脏外科手术学电子杂志, 2013, 2(1):45-52.
[22]
Yang S, Xiao H, Cao L. Recent advances in heat shock proteins in cancer diagnosis, prognosis, metabolism and treatment[J]. Biomed Pharmacother, 2021(142):112074.
[23]
Cho W, Jin X, Pang J, et al. The molecular chaperone heat shock protein 70 controls liver cancer initiation and progression by regulating adaptive DNA damage and mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathways[J]. Mol Cell Biol, 2019, 39(9):e00391-18.
[24]
Wang Q, Wang K, Tan X, et al. Immunomodulatory role of metalloproteases in cancers: current progress and future trends[J]. Front Immunol, 2022(13): 1064033.
[25]
Hwang KE, Kim HJ, Song IS, et al. Salinomycin suppresses TGF-β1-induced EMT by down-regulating MMP-2 and MMP-9 via the AMPK/SIRT1 pathway in non-small cell lung cancer[J]. Int J Med Sci, 2021, 18(3):715-726.
[26]
Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis[J]. Trends Cell Biol, 2019, 29(3):212-226.
[27]
Cabral-Pacheco GA, Garza-Veloz I, Castruita-De La Rosa C, et al. The roles of matrix metalloproteinases and their inhibitors in human diseases[J]. Int J Mol Sci, 2020, 21(24):9739.
[28]
Golonka RM, Vijay-Kumar M. Atypical immunometabolism and metabolic reprogramming in liver cancer: deciphering the role of gut microbiome[J]. Adv Cancer Res, 2021(149):171-255.
[29]
付豪爽, 赵爽, 谢青. 肠道菌群促进肝癌发生的机制及其临床应用[J]. 肝脏, 2021, 26(6):696-700.
[30]
Bartolini I, Risaliti M, Tucci R, et al. Gut microbiota and immune system in liver cancer: promising therapeutic implication from development to treatment[J]. World J Gastrointest Oncol, 2021, 13(11):1616-1631.
[31]
Zhang C, Yang M, Ericsson AC. The potential gut microbiota-mediated treatment options for liver cancer[J]. Front Oncol, 2020(10):524205.
[32]
Shen S, Khatiwada S, Behary J, et al. Modulation of the gut microbiome to improve clinical outcomes in hepatocellular carcinoma[J]. Cancers, 2022, 14(9):2099.
[33]
Spanu D, Pretta A, Lai E, et al. Hepatocellular carcinoma and microbiota: implications for clinical management and treatment[J]. World J Hepatol, 2022, 14(7):1319-1332.
[34]
Torti SV, Manz DH, Paul BT, et al. Iron and cancer[J]. Annu Rev Nutr, 2018(38):97-125.
[35]
Toyokuni S, Ito F, Yamashita K, et al. Iron and thiol redox signaling in cancer: an exquisite balance to escape ferroptosis[J]. Free Radic Biol Med, 2017(108):610-626.
[36]
Kim SE, Zhang L, Ma K, et al. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth[J]. Nat Nanotechnol, 2016, 11(11):977-985.
[37]
Wu J, Wang Y, Jiang R, et al. Ferroptosis in liver disease: new insights into disease mechanisms[J]. Cell Death Discov, 2021, 7(1):276.
[1] 何雪威, 谷美玉, 吴亭亭. 超声子宫动脉及子宫内膜血流参数对不明原因复发性流产患者妊娠结局的影响[J]. 中华医学超声杂志(电子版), 2023, 20(11): 1158-1163.
[2] 崔占斌, 乔军利, 张丽丽, 韩明强. 尿碘水平与甲状腺乳头状癌患者术后复发危险度分层的相关性[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 615-618.
[3] 陈垚, 徐伯群, 高志慧. 改良式中间上入路根治术治疗甲状腺癌的有效性安全性研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 619-622.
[4] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[5] 朱迎, 赵征, 许达, 陆录, 殷保兵. 免疫检查点抑制剂治疗肝细胞癌的进展与展望[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 5-10.
[6] 张占国. 靶向免疫治疗时代的肝癌肝切除术再思考[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 11-15.
[7] 孙振, 谭天华, 郑洋洋, 李喆, 宋京海. 基于术前纤维蛋白原与白蛋白比值构建肝癌微血管侵犯的预测模型[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 27-32.
[8] 沈佳佳, 何经雄, 王芳, 江艺, 潘凡, 张小进. ICG荧光引导腹腔镜射频消融在合并严重大结节肝硬化小肝癌患者治疗中的应用[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 68-71.
[9] 张宇, 余灵祥, 杨永平, 赵德希, 刁广浩, 杨木易, 赵亮, 刘佳, 李鹏, 张宁, 任辉. 原发性肝癌Ⅲa期降期后肝切除临床疗效分析[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 78-82.
[10] 严帅, 岳志强, 赵江华, 陈琳, 吴金柱. 初始不可切除肝癌患者靶向免疫联合治疗后手术切除临床疗效[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 83-87.
[11] 冯军, 艾麦提·牙森, 梁润斌, 廖志洪, 赵超尘, 谢嘉奋, 朱灿华, 罗燕君, 汪国营. 肝癌肝移植术前应用PD-1抑制剂后发生急性排斥反应一例并文献复习[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 88-92.
[12] 张传海, 周毅, 王一帆, 马金良. 基于"红/黄交界线"胆囊板入路联合ICG荧光导航的腹腔镜解剖性肝切除(附视频)[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 62-67.
[13] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[14] 张政赢, 鞠阳, 刘晓宁. 二甲双胍对2型糖尿病患者大肠腺瘤术后复发的影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 485-488.
[15] 邓世栋, 刘凌志, 郭大勇, 王超, 黄忠欣, 张晖辉. 沉默SNHG1基因对膀胱癌细胞增殖、凋亡、迁移和铁死亡的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 804-811.
阅读次数
全文


摘要