切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2024, Vol. 13 ›› Issue (01) : 27 -32. doi: 10.3877/cma.j.issn.2095-3232.2024.01.006

临床研究

基于术前纤维蛋白原与白蛋白比值构建肝癌微血管侵犯的预测模型
孙振, 谭天华, 郑洋洋, 李喆, 宋京海()   
  1. 100730 北京医院普通外科 国家老年医学中心 中国医学科学院老年医学研究院
  • 收稿日期:2023-09-08 出版日期:2024-02-10
  • 通信作者: 宋京海
  • 基金资助:
    国家自然科学基金(81671581)

Establishment of prediction model for microvascular invasion of hepatocellular carcinoma based on preoperative fibrinogen-to-albumin ratio

Zhen Sun, Tianhua Tan, Yangyang Zheng, Zhe Li, Jinghai Song()   

  1. Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatrics Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
  • Received:2023-09-08 Published:2024-02-10
  • Corresponding author: Jinghai Song
引用本文:

孙振, 谭天华, 郑洋洋, 李喆, 宋京海. 基于术前纤维蛋白原与白蛋白比值构建肝癌微血管侵犯的预测模型[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 27-32.

Zhen Sun, Tianhua Tan, Yangyang Zheng, Zhe Li, Jinghai Song. Establishment of prediction model for microvascular invasion of hepatocellular carcinoma based on preoperative fibrinogen-to-albumin ratio[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2024, 13(01): 27-32.

目的

探讨纤维蛋白原(FIB)与ALB比值(FAR)对肝细胞癌(肝癌)微血管侵犯(MVI)的预测价值。

方法

回顾性分析2013年1月至2020年10月在北京医院接受手术治疗的193例肝癌患者临床资料。患者均签署知情同意书,符合医学伦理学规定。其中男162例,女31例;平均年龄(60±13)岁。术后病理检查证实合并MVI 88例。收集患者术前血清FIB、ALB等数据,计算FAR。采用ROC曲线分析FAR诊断价值。采用Logistic回归模型分析MVI发生的影响因素。根据多因素分析结果构建MVI预测列线图。采用Unreliability检验评估该列线图的预测效果。

结果

FAR诊断MVI的最佳界值为0.057时,将患者分为高FAR组130例,低FAR组63例。Logistic多因素回归分析显示,肿瘤直径≥3 cm(OR=3.263,95%CI:1.300~6.261,P=0.010)、AFP≥400 μg/L(OR=2.818,95%CI:1.214~6.542,P=0.016)、AFP 20~400 μg/L(OR=2.326,95%CI:1.026~5.271,P=0.043)、总蛋白≥85 g/L(OR=1.107,95%CI:1.038~1.181,P=0.002)和FAR≥0.057(OR=2.600,95%CI:1.079~6.261,P=0.033)是MVI的独立危险因素。将肿瘤直径、AFP、总蛋白和FAR纳入构建列线图,ROC曲线下面积为0.755,校正曲线显示效果良好(P=0.956)。

结论

基于FAR建立的肝癌MVI临床预测模型简便可靠,有助于MVI高危肝癌患者的早期识别,制定更为精准的治疗方案。

Objective

To evaluate the predictive value of fibrinogen (FIB)-to-albumin (ALB) ratio (FAR) for microvascular invasion (MVI) in hepatocellular carcinoma (HCC).

Methods

Clinical data of 193 patients with liver cancer who underwent surgical treatment in Beijing Hospital from January 2013 to October 2020 were retrospectively analyzed. The informed consents of all patients were obtained and the local ethical committee approval was received. Among them, 162 patients were male and 31 female, aged (60±13) years on average. 88 cases were confirmed with MVI by postoperative pathological examination. Preoperative serum FIB, ALB and other data were collected and the FAR was calculated. The diagnostic value of FAR was analyzed by the ROC curve. The influencing factors of MVI were assessed by Logistic regression model. According to the results of multivariate analysis, the nomogram for predicting MVI was established. The prediction efficacy of this nomogram was evaluated by Unreliability test.

Results

When the optimal cut-off value of FAR in diagnosing MVI was 0.057, all patients were divided into high group (n=130) and low FAR group (n=63). Multivariate Logistic regression analysis showed that tumor diameter ≥3 cm (OR=3.263, 95%CI: 1.300-6.261, P=0.010), AFP≥400 μg/L (OR=2.818, 95%CI:1.214-6.542, P=0.016); AFP 20-400 μg/L,(OR=2.326, 95%CI:1.026-5.271, P=0.043), total protein (OR=1.107, 95%CI:1.038-1.181, P=0.002) and FAR (OR=2.600, 95%CI:1.079-6.261, P=0.033) were independent risk factors for MVI. Tumor diameter, AFP, total protein and FAR were included in the nomogram, and the area under the ROC curve was 0.755, and the calibration curve showed high efficacy (P=0.956).

Conclusions

Clinical prediction model for MVI of liver cancer based on FAR is simple and reliable, which contributes to early identification of high-risk HCC patients with MVI and making more precise treatment regimens.

表1 FAR与肝癌患者临床病理参数的关系[例(%)]
表2 肝癌患者MVI发生的影响因素分析
图1 预测肝细胞癌MVI的列线图注:FAR为纤维蛋白原与白蛋白比值,MVI为微血管侵犯
图2 预测肝癌MVI的列线图校准曲线及拟合优度检验注:C(ROC)为曲线下面积;S:p为Unreliability检验P
图3 预测肝癌MVI的列线图决策曲线注:曲线All表示所有患者均按微血管侵犯(MVI)阳性进行临床干预获益情况,直线None表示所有患者均按MVI阴性进行临床干预获益情况
[1]
Zheng R, Zhang S, Zeng H, et al. Cancer incidence and mortality in China, 2016[J]. J Nat Cancer Center, 2022, 2(1):1-9.
[2]
中华人民共和国国家卫生健康委员会医政医管局. 原发性肝癌诊疗指南(2022年版)[J]. 中华消化外科杂志, 2022, 21(2):143-68.
[3]
Chen ZH, Zhang XP, Wang H, et al. Effect of microvascular invasion on the postoperative long-term prognosis of solitary small HCC: a systematic review and meta-analysis[J]. HPB, 2019, 21(8):935-944.
[4]
Zhang XP, Wang K, Wei XB, et al. An eastern hepatobiliary surgery hospital microvascular invasion scoring system in predicting prognosis of patients with hepatocellular carcinoma and microvascular invasion after R0 liver resection: a large-scale, multicenter study[J]. Oncologist, 2019, 24(12):e1476-1488.
[5]
Wang W, Guo Y, Zhong J, et al. The clinical significance of microvascular invasion in the surgical planning and postoperative sequential treatment in hepatocellular carcinoma[J]. Sci Rep, 2021, 11(1):2415.
[6]
Zhang LP, Ren H, Du YX, et al. Prognostic value of the preoperative fibrinogen-to-albumin ratio in pancreatic ductal adenocarcinoma patients undergoing R0 resection[J]. World J Gastroenterol, 2020, 26(46):7382-7404.
[7]
叶莹鹏, 杨勇, 蔡星晨, 等. 单发大肝癌术后早期复发危险因素分析[J]. 中华普通外科杂志, 2023, 38(1):1-6.
[8]
Zhong XP, Zhang YF, Mei J, et al. Anatomical versus non-anatomical resection for hepatocellular carcinoma with microscope vascular invasion: a propensity score matching analysis[J]. J Cancer, 2019, 10(17):3950-3957.
[9]
Okamura Y, Sugiura T, Ito T, et al. Anatomical resection is useful for the treatment of primary solitary hepatocellular carcinoma with predicted microscopic vessel invasion and/or intrahepatic metastasis[J]. Surg Today, 2021, 51(9):1429-1439.
[10]
Sun Z, Li Z, Shi XL, et al. Anatomic versus non-anatomic resection of hepatocellular carcinoma with microvascular invasion: a systematic review and meta-analysis[J]. Asian J Surg, 2021, 44(9): 1143-1150.
[11]
Zhou J, Sun H, Wang Z, et al. Guidelines for the diagnosis and treatment of hepatocellular carcinoma (2019 edition)[J]. Liver Cancer, 2020, 9(6):682-720.
[12]
Ma XL, Tang WG, Yang MJ, et al. Serum STIP1, a novel indicator for microvascular invasion, predicts outcomes and treatment response in hepatocellular carcinoma[J]. Front Oncol, 2020(10):511.
[13]
Zhang H, Zhou Y, Li Y, et al. Predictive value of gamma-glutamyl transpeptidase to lymphocyte count ratio in hepatocellular carcinoma patients with microvascular invasion[J]. BMC Cancer, 2020, 20(1): 132.
[14]
Wang Q, Li C, Zhang J, et al. Radiomics models for predicting microvascular invasion in hepatocellular carcinoma: a systematic review and radiomics quality score assessment[J]. Cancers, 2021, 13(22):5864.
[15]
Zhong X, Peng J, Xie Y, et al. A nomogram based on multi-modal ultrasound for prediction of microvascular invasion and recurrence of hepatocellular carcinoma[J]. Eur J Radiol, 2022(151):110281.
[16]
Ghanim B, Hoda MA, Klikovits T, et al. Circulating fibrinogen is a prognostic and predictive biomarker in malignant pleural mesothelioma[J]. Br J Cancer, 2014, 110(4):984-990.
[17]
Gan W, Yi Y, Fu Y, et al. Fibrinogen and C-reactive protein score is a prognostic index for patients with hepatocellular carcinoma undergoing curative resection: a prognostic nomogram study[J]. J Cancer, 2018, 9(1):148-156.
[18]
Staton CA, Brown NJ, Lewis CE. The role of fibrinogen and related fragments in tumour angiogenesis and metastasis[J]. Expert Opin Biol Ther, 2003, 3(7):1105-1120.
[19]
Kwaan HC, Lindholm PF. Fibrin and fibrinolysis in cancer[J]. Semin Thromb Hemost, 2019, 45(4):413-422.
[20]
Dai T, Peng L, Lin G, et al. Preoperative elevated plasma fibrinogen level predicts tumor recurrence and poor prognosis in patients with hepatocellular carcinoma[J]. J Gastrointest Oncol, 2019, 10(6):1049-1063.
[21]
Wang L, Li Q, Zhang J, et al. A novel prognostic scoring model based on albumin and gamma-glutamyltransferase for hepatocellular carcinoma prognosis[J]. Cancer Manag Res, 2019(11):10685-10694.
[22]
Sun DW, An L, Lv GY. Albumin-fibrinogen ratio and fibrinogen-prealbumin ratio as promising prognostic markers for cancers: an updated meta-analysis[J]. World J Surg Oncol, 2020, 18(1):9.
[23]
Xu Q, Yan Y, Gu S, et al. A novel inflammation-based prognostic score: the fibrinogen/albumin ratio predicts prognoses of patients after curative resection for hepatocellular carcinoma[J]. J Immunol Res, 2018:4925498.
[24]
Prieto J, Melero I, Sangro B. Immunological landscape and immunotherapy of hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2015, 12(12):681-700.
[25]
Mantovani A, Ponzetta A, Inforzato A, et al. Innate immunity, inflammation and tumour progression: double-edged swords[J]. J Intern Med, 2019, 285(5):524-532.
[26]
Brostjan C, Oehler R. The role of neutrophil death in chronic inflammation and cancer[J]. Cell Death Discov, 2020(6):26.
[27]
Zhang J, Huang SH, Li H, et al. Preoperative lymphocyte count is a favorable prognostic factor of disease-free survival in non-small-cell lung cancer[J]. Med Oncol, 2013, 30(1):352.
[28]
Mjaess G, Chebel R, Karam A, et al. Prognostic role of neutrophil-to-lymphocyte ratio (NLR) in urological tumors: an umbrella review of evidence from systematic reviews and meta-analyses[J]. Acta Oncol, 2021, 60(6):704-713.
[29]
Chan SWS, Smith E, Aggarwal R, et al. Systemic inflammatory markers of survival in epidermal growth factor-mutated non-small-cell lung cancer: single-institution analysis, systematic review, and meta-analysis[J]. Clin Lung Cancer, 2021, 22(5):390-407.
[30]
Pravisani R, Mocchegiani F, Isola M, et al. Postoperative trends and prognostic values of inflammatory and nutritional biomarkers after liver transplantation for hepatocellular carcinoma[J]. Cancers, 2021, 13(3):513.
[31]
Feliciano EMC, Kroenke CH, Meyerhardt JA, et al. Association of systemic inflammation and sarcopenia with survival in nonmetastatic colorectal cancer: results from the C SCANS study[J]. JAMA Oncol, 2017, 3(12):e172319.
[32]
于艳龙, 刘中华, 史赢, 等. 术前中性粒细胞与淋巴细胞比值和肿瘤相关因素预测肝癌患者微血管浸润[J]. 中华肝胆外科杂志, 2019, 25(2):120-123.
[33]
Margonis GA, Sergentanis TN, Ntanasis-Stathopoulos I, et al. Impact of surgical margin width on recurrence and overall survival following R0 hepatic resection of colorectal metastases: a systematic review and meta-analysis[J]. Ann Surg, 2018, 267(6):1047-1055.
[34]
Zheng J, Chakraborty J, Chapman WC, et al. Preoperative prediction of microvascular invasion in hepatocellular carcinoma using quantitative image analysis[J]. J Am Coll Surg, 2017, 225(6):778-788, e1.
[35]
Lei Z, Li J, Wu D, et al. Nomogram for preoperative estimation of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma within the Milan criteria[J]. JAMA Surg, 2016, 151(4): 356-363.
[36]
Chen S, Ji R, Shi X, et al. Retrospective analysis of efficacy, safety, and prognostic factors in a cohort of Chinese hepatocellular carcinoma patients treated with drug-eluting bead transarterial chemoembolization[J]. Braz J Med Biol Res, 2019, 52(12):e8467.
[1] 李淼, 朱连华, 韩鹏, 姜波, 费翔. 高帧频超声造影评价肝细胞癌血管形态与风险因素的研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 911-915.
[2] 孙帼, 谢迎东, 徐超丽, 杨斌. 超声联合临床特征的列线图模型预测甲状腺乳头状癌淋巴结转移的价值[J]. 中华医学超声杂志(电子版), 2023, 20(07): 734-742.
[3] 甄子铂, 刘金虎. 基于列线图模型探究静脉全身麻醉腹腔镜胆囊切除术患者术后肠道功能紊乱的影响因素[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 61-65.
[4] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[5] 朱迎, 赵征, 许达, 陆录, 殷保兵. 免疫检查点抑制剂治疗肝细胞癌的进展与展望[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 5-10.
[6] 张占国. 靶向免疫治疗时代的肝癌肝切除术再思考[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 11-15.
[7] 魏小勇. 原发性肝癌转化治疗焦点问题探讨[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 602-607.
[8] 张其坤, 商福超, 李琪, 栗光明, 王孟龙. 联合脾切除对肝癌合并门静脉高压症患者根治性切除术后的生存获益分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 613-618.
[9] 严庆, 刘颖, 邓斐文, 陈焕伟. 微血管侵犯对肝癌肝移植患者生存预后的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 624-629.
[10] 张文华, 陶焠, 胡添松. 不同部位外生型肝癌临床病理特点及其对术后肝内复发和预后影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 651-655.
[11] 韩宇, 张武, 李安琪, 陈文颖, 谢斯栋. MRI肝脏影像报告和数据系统对非肝硬化乙肝患者肝细胞癌的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 669-673.
[12] 张维志, 刘连新. 基于生物信息学分析IPO7在肝癌中的表达及意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 694-701.
[13] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[14] 叶文涛, 吴忠均, 廖锐. 癌旁组织ALOX15表达与肝癌根治性切除术后预后的关系[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 708-712.
[15] 薛文欣, 常婉英, 肖瑶, 张盼盼, 党晓智, 宋宏萍. 乳腺恶性非肿块型病变列线图预测模型的构建及外部验证[J]. 中华临床医师杂志(电子版), 2023, 17(10): 1045-1050.
阅读次数
全文


摘要