切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2024, Vol. 13 ›› Issue (01) : 27 -32. doi: 10.3877/cma.j.issn.2095-3232.2024.01.006

临床研究

基于术前纤维蛋白原与白蛋白比值构建肝癌微血管侵犯的预测模型
孙振, 谭天华, 郑洋洋, 李喆, 宋京海()   
  1. 100730 北京医院普通外科 国家老年医学中心 中国医学科学院老年医学研究院
  • 收稿日期:2023-09-08 出版日期:2024-02-10
  • 通信作者: 宋京海
  • 基金资助:
    国家自然科学基金(81671581)

Establishment of prediction model for microvascular invasion of hepatocellular carcinoma based on preoperative fibrinogen-to-albumin ratio

Zhen Sun, Tianhua Tan, Yangyang Zheng, Zhe Li, Jinghai Song()   

  1. Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatrics Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
  • Received:2023-09-08 Published:2024-02-10
  • Corresponding author: Jinghai Song
引用本文:

孙振, 谭天华, 郑洋洋, 李喆, 宋京海. 基于术前纤维蛋白原与白蛋白比值构建肝癌微血管侵犯的预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 27-32.

Zhen Sun, Tianhua Tan, Yangyang Zheng, Zhe Li, Jinghai Song. Establishment of prediction model for microvascular invasion of hepatocellular carcinoma based on preoperative fibrinogen-to-albumin ratio[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2024, 13(01): 27-32.

目的

探讨纤维蛋白原(FIB)与ALB比值(FAR)对肝细胞癌(肝癌)微血管侵犯(MVI)的预测价值。

方法

回顾性分析2013年1月至2020年10月在北京医院接受手术治疗的193例肝癌患者临床资料。患者均签署知情同意书,符合医学伦理学规定。其中男162例,女31例;平均年龄(60±13)岁。术后病理检查证实合并MVI 88例。收集患者术前血清FIB、ALB等数据,计算FAR。采用ROC曲线分析FAR诊断价值。采用Logistic回归模型分析MVI发生的影响因素。根据多因素分析结果构建MVI预测列线图。采用Unreliability检验评估该列线图的预测效果。

结果

FAR诊断MVI的最佳界值为0.057时,将患者分为高FAR组130例,低FAR组63例。Logistic多因素回归分析显示,肿瘤直径≥3 cm(OR=3.263,95%CI:1.300~6.261,P=0.010)、AFP≥400 μg/L(OR=2.818,95%CI:1.214~6.542,P=0.016)、AFP 20~400 μg/L(OR=2.326,95%CI:1.026~5.271,P=0.043)、总蛋白≥85 g/L(OR=1.107,95%CI:1.038~1.181,P=0.002)和FAR≥0.057(OR=2.600,95%CI:1.079~6.261,P=0.033)是MVI的独立危险因素。将肿瘤直径、AFP、总蛋白和FAR纳入构建列线图,ROC曲线下面积为0.755,校正曲线显示效果良好(P=0.956)。

结论

基于FAR建立的肝癌MVI临床预测模型简便可靠,有助于MVI高危肝癌患者的早期识别,制定更为精准的治疗方案。

Objective

To evaluate the predictive value of fibrinogen (FIB)-to-albumin (ALB) ratio (FAR) for microvascular invasion (MVI) in hepatocellular carcinoma (HCC).

Methods

Clinical data of 193 patients with liver cancer who underwent surgical treatment in Beijing Hospital from January 2013 to October 2020 were retrospectively analyzed. The informed consents of all patients were obtained and the local ethical committee approval was received. Among them, 162 patients were male and 31 female, aged (60±13) years on average. 88 cases were confirmed with MVI by postoperative pathological examination. Preoperative serum FIB, ALB and other data were collected and the FAR was calculated. The diagnostic value of FAR was analyzed by the ROC curve. The influencing factors of MVI were assessed by Logistic regression model. According to the results of multivariate analysis, the nomogram for predicting MVI was established. The prediction efficacy of this nomogram was evaluated by Unreliability test.

Results

When the optimal cut-off value of FAR in diagnosing MVI was 0.057, all patients were divided into high group (n=130) and low FAR group (n=63). Multivariate Logistic regression analysis showed that tumor diameter ≥3 cm (OR=3.263, 95%CI: 1.300-6.261, P=0.010), AFP≥400 μg/L (OR=2.818, 95%CI:1.214-6.542, P=0.016); AFP 20-400 μg/L,(OR=2.326, 95%CI:1.026-5.271, P=0.043), total protein (OR=1.107, 95%CI:1.038-1.181, P=0.002) and FAR (OR=2.600, 95%CI:1.079-6.261, P=0.033) were independent risk factors for MVI. Tumor diameter, AFP, total protein and FAR were included in the nomogram, and the area under the ROC curve was 0.755, and the calibration curve showed high efficacy (P=0.956).

Conclusions

Clinical prediction model for MVI of liver cancer based on FAR is simple and reliable, which contributes to early identification of high-risk HCC patients with MVI and making more precise treatment regimens.

表1 FAR与肝癌患者临床病理参数的关系[例(%)]
表2 肝癌患者MVI发生的影响因素分析
图1 预测肝细胞癌MVI的列线图注:FAR为纤维蛋白原与白蛋白比值,MVI为微血管侵犯
图2 预测肝癌MVI的列线图校准曲线及拟合优度检验注:C(ROC)为曲线下面积;S:p为Unreliability检验P
图3 预测肝癌MVI的列线图决策曲线注:曲线All表示所有患者均按微血管侵犯(MVI)阳性进行临床干预获益情况,直线None表示所有患者均按MVI阴性进行临床干预获益情况
[1]
Zheng R, Zhang S, Zeng H, et al. Cancer incidence and mortality in China, 2016[J]. J Nat Cancer Center, 2022, 2(1):1-9.
[2]
中华人民共和国国家卫生健康委员会医政医管局. 原发性肝癌诊疗指南(2022年版)[J]. 中华消化外科杂志, 2022, 21(2):143-68.
[3]
Chen ZH, Zhang XP, Wang H, et al. Effect of microvascular invasion on the postoperative long-term prognosis of solitary small HCC: a systematic review and meta-analysis[J]. HPB, 2019, 21(8):935-944.
[4]
Zhang XP, Wang K, Wei XB, et al. An eastern hepatobiliary surgery hospital microvascular invasion scoring system in predicting prognosis of patients with hepatocellular carcinoma and microvascular invasion after R0 liver resection: a large-scale, multicenter study[J]. Oncologist, 2019, 24(12):e1476-1488.
[5]
Wang W, Guo Y, Zhong J, et al. The clinical significance of microvascular invasion in the surgical planning and postoperative sequential treatment in hepatocellular carcinoma[J]. Sci Rep, 2021, 11(1):2415.
[6]
Zhang LP, Ren H, Du YX, et al. Prognostic value of the preoperative fibrinogen-to-albumin ratio in pancreatic ductal adenocarcinoma patients undergoing R0 resection[J]. World J Gastroenterol, 2020, 26(46):7382-7404.
[7]
叶莹鹏, 杨勇, 蔡星晨, 等. 单发大肝癌术后早期复发危险因素分析[J]. 中华普通外科杂志, 2023, 38(1):1-6.
[8]
Zhong XP, Zhang YF, Mei J, et al. Anatomical versus non-anatomical resection for hepatocellular carcinoma with microscope vascular invasion: a propensity score matching analysis[J]. J Cancer, 2019, 10(17):3950-3957.
[9]
Okamura Y, Sugiura T, Ito T, et al. Anatomical resection is useful for the treatment of primary solitary hepatocellular carcinoma with predicted microscopic vessel invasion and/or intrahepatic metastasis[J]. Surg Today, 2021, 51(9):1429-1439.
[10]
Sun Z, Li Z, Shi XL, et al. Anatomic versus non-anatomic resection of hepatocellular carcinoma with microvascular invasion: a systematic review and meta-analysis[J]. Asian J Surg, 2021, 44(9): 1143-1150.
[11]
Zhou J, Sun H, Wang Z, et al. Guidelines for the diagnosis and treatment of hepatocellular carcinoma (2019 edition)[J]. Liver Cancer, 2020, 9(6):682-720.
[12]
Ma XL, Tang WG, Yang MJ, et al. Serum STIP1, a novel indicator for microvascular invasion, predicts outcomes and treatment response in hepatocellular carcinoma[J]. Front Oncol, 2020(10):511.
[13]
Zhang H, Zhou Y, Li Y, et al. Predictive value of gamma-glutamyl transpeptidase to lymphocyte count ratio in hepatocellular carcinoma patients with microvascular invasion[J]. BMC Cancer, 2020, 20(1): 132.
[14]
Wang Q, Li C, Zhang J, et al. Radiomics models for predicting microvascular invasion in hepatocellular carcinoma: a systematic review and radiomics quality score assessment[J]. Cancers, 2021, 13(22):5864.
[15]
Zhong X, Peng J, Xie Y, et al. A nomogram based on multi-modal ultrasound for prediction of microvascular invasion and recurrence of hepatocellular carcinoma[J]. Eur J Radiol, 2022(151):110281.
[16]
Ghanim B, Hoda MA, Klikovits T, et al. Circulating fibrinogen is a prognostic and predictive biomarker in malignant pleural mesothelioma[J]. Br J Cancer, 2014, 110(4):984-990.
[17]
Gan W, Yi Y, Fu Y, et al. Fibrinogen and C-reactive protein score is a prognostic index for patients with hepatocellular carcinoma undergoing curative resection: a prognostic nomogram study[J]. J Cancer, 2018, 9(1):148-156.
[18]
Staton CA, Brown NJ, Lewis CE. The role of fibrinogen and related fragments in tumour angiogenesis and metastasis[J]. Expert Opin Biol Ther, 2003, 3(7):1105-1120.
[19]
Kwaan HC, Lindholm PF. Fibrin and fibrinolysis in cancer[J]. Semin Thromb Hemost, 2019, 45(4):413-422.
[20]
Dai T, Peng L, Lin G, et al. Preoperative elevated plasma fibrinogen level predicts tumor recurrence and poor prognosis in patients with hepatocellular carcinoma[J]. J Gastrointest Oncol, 2019, 10(6):1049-1063.
[21]
Wang L, Li Q, Zhang J, et al. A novel prognostic scoring model based on albumin and gamma-glutamyltransferase for hepatocellular carcinoma prognosis[J]. Cancer Manag Res, 2019(11):10685-10694.
[22]
Sun DW, An L, Lv GY. Albumin-fibrinogen ratio and fibrinogen-prealbumin ratio as promising prognostic markers for cancers: an updated meta-analysis[J]. World J Surg Oncol, 2020, 18(1):9.
[23]
Xu Q, Yan Y, Gu S, et al. A novel inflammation-based prognostic score: the fibrinogen/albumin ratio predicts prognoses of patients after curative resection for hepatocellular carcinoma[J]. J Immunol Res, 2018:4925498.
[24]
Prieto J, Melero I, Sangro B. Immunological landscape and immunotherapy of hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2015, 12(12):681-700.
[25]
Mantovani A, Ponzetta A, Inforzato A, et al. Innate immunity, inflammation and tumour progression: double-edged swords[J]. J Intern Med, 2019, 285(5):524-532.
[26]
Brostjan C, Oehler R. The role of neutrophil death in chronic inflammation and cancer[J]. Cell Death Discov, 2020(6):26.
[27]
Zhang J, Huang SH, Li H, et al. Preoperative lymphocyte count is a favorable prognostic factor of disease-free survival in non-small-cell lung cancer[J]. Med Oncol, 2013, 30(1):352.
[28]
Mjaess G, Chebel R, Karam A, et al. Prognostic role of neutrophil-to-lymphocyte ratio (NLR) in urological tumors: an umbrella review of evidence from systematic reviews and meta-analyses[J]. Acta Oncol, 2021, 60(6):704-713.
[29]
Chan SWS, Smith E, Aggarwal R, et al. Systemic inflammatory markers of survival in epidermal growth factor-mutated non-small-cell lung cancer: single-institution analysis, systematic review, and meta-analysis[J]. Clin Lung Cancer, 2021, 22(5):390-407.
[30]
Pravisani R, Mocchegiani F, Isola M, et al. Postoperative trends and prognostic values of inflammatory and nutritional biomarkers after liver transplantation for hepatocellular carcinoma[J]. Cancers, 2021, 13(3):513.
[31]
Feliciano EMC, Kroenke CH, Meyerhardt JA, et al. Association of systemic inflammation and sarcopenia with survival in nonmetastatic colorectal cancer: results from the C SCANS study[J]. JAMA Oncol, 2017, 3(12):e172319.
[32]
于艳龙, 刘中华, 史赢, 等. 术前中性粒细胞与淋巴细胞比值和肿瘤相关因素预测肝癌患者微血管浸润[J]. 中华肝胆外科杂志, 2019, 25(2):120-123.
[33]
Margonis GA, Sergentanis TN, Ntanasis-Stathopoulos I, et al. Impact of surgical margin width on recurrence and overall survival following R0 hepatic resection of colorectal metastases: a systematic review and meta-analysis[J]. Ann Surg, 2018, 267(6):1047-1055.
[34]
Zheng J, Chakraborty J, Chapman WC, et al. Preoperative prediction of microvascular invasion in hepatocellular carcinoma using quantitative image analysis[J]. J Am Coll Surg, 2017, 225(6):778-788, e1.
[35]
Lei Z, Li J, Wu D, et al. Nomogram for preoperative estimation of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma within the Milan criteria[J]. JAMA Surg, 2016, 151(4): 356-363.
[36]
Chen S, Ji R, Shi X, et al. Retrospective analysis of efficacy, safety, and prognostic factors in a cohort of Chinese hepatocellular carcinoma patients treated with drug-eluting bead transarterial chemoembolization[J]. Braz J Med Biol Res, 2019, 52(12):e8467.
[1] 蒲彦婷, 吴翠先, 兰玉梅. 类风湿关节炎患者骨质疏松症风险预测列线图模型构建[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 596-603.
[2] 中国医师协会肝癌专业委员会. 肝细胞癌伴微血管侵犯诊断和治疗中国专家共识(2024版)[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 313-324.
[3] 李华志, 曹广, 刘殿刚, 张雅静. 不同入路下行肝切除术治疗原发性肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 52-55.
[4] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[5] 屈翔宇, 张懿刚, 李浩令, 邱天, 谈燚. USP24及其共表达肿瘤代谢基因在肝细胞癌中的诊断和预后预测作用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 659-662.
[6] 屈勤芳, 束方莲. 盆腔器官脱垂患者盆底重建手术后压力性尿失禁发生的影响因素及列线图预测模型构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 606-612.
[7] 公宇, 廖媛, 尚梅. 肝细胞癌TACE术后复发影响因素及预测模型建立[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 818-824.
[8] 李一帆, 朱帝文, 任伟新, 鲍应军, 顾俊鹏, 张海潇, 曹耿飞, 阿斯哈尔·哈斯木, 纪卫政. 血GP73水平在原发性肝癌TACE疗效评价中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 825-830.
[9] 刘敏思, 李荣, 李媚. 基于GGT与Plt比值的模型在HBV相关肝细胞癌诊断中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 831-835.
[10] 焦振东, 惠鹏, 金上博. 三维可视化结合ICG显像技术在腹腔镜肝切除术治疗复发性肝癌中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 859-864.
[11] 陈晓鹏, 王佳妮, 练庆海, 杨九妹. 肝细胞癌VOPP1表达及其与预后的关系[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 876-882.
[12] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[13] 吴警, 吐尔洪江·吐逊, 温浩. 肝切除术前肝功能评估新进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 889-893.
[14] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[15] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
阅读次数
全文


摘要