切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2024, Vol. 13 ›› Issue (01) : 109 -113. doi: 10.3877/cma.j.issn.2095-3232.2024.01.022

综述

铁死亡及其在肝脏缺血-再灌注损伤中的研究进展
李乐, 朱志军()   
  1. 100045 首都医科大学附属北京友谊医院肝脏移植中心;024000 内蒙古自治区赤峰市医院肝胆外科
    100045 首都医科大学附属北京友谊医院肝脏移植中心
  • 收稿日期:2023-10-04 出版日期:2024-02-10
  • 通信作者: 朱志军

Research progress of ferroptosis in liver ischemia-reperfusion injury

Le Li, Zhijun Zhu()   

  1. Liver Transplantation Center, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing 100045, China; Department of Hepatobiliary Surgery, Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, China
    Liver Transplantation Center, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing 100045, China
  • Received:2023-10-04 Published:2024-02-10
  • Corresponding author: Zhijun Zhu
引用本文:

李乐, 朱志军. 铁死亡及其在肝脏缺血-再灌注损伤中的研究进展[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 109-113.

Le Li, Zhijun Zhu. Research progress of ferroptosis in liver ischemia-reperfusion injury[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2024, 13(01): 109-113.

铁死亡是近年来新发现的细胞死亡形式,研究认为机体主要通过铁死亡防御系统(System Xc-通路和MVA信号通路)和铁死亡执行系统(PUFA-PL代谢及过氧化和铁代谢)来动态调节铁死亡。越来越多研究认为铁死亡与不同器官缺血-再灌注损伤间存在相关性,其中巨噬细胞胞外诱捕网、Maresin结合组织再生物1、血红素氧合酶1修饰的骨髓间充质干细胞和HUWE-1等均通过影响铁死亡而影响肝脏缺血-再灌注损伤。因此本文对铁死亡与肝脏缺血-再灌注损伤间的相关研究进行综述报道,以期为肝脏器官保护提供理论基础和实践指导。

Ferroptosis is a newly-discovered form of cell death in recent years. It is believed that the body can dynamically regulate ferroptosis mainly through ferroptosis defense system (System Xc-pathway and MVA signaling pathway) and ferroptosis executive system (PUFA-PL metabolism, peroxidation and iron metabolism). More and more studies have indicated that ferroptosis is correlated with ischemia-reperfusion injury of different organs. Among them, macrophage extracellular traps, Maresin-1, bone marrow mesenchymal stem cells modified by heme oxygenase 1 and HUWE-1 may all affect liver ischemia-reperfusion injury by affecting ferroptosis. Therefore, in this article, related studies between ferroptosis and liver ischemia-reperfusion injury were reviewed, aiming to provide theoretical basis and practical guidance for liver organ protection.

[1]
Guo Z, Luo T, Mo R, et al. Ischemia-free organ transplantation-a review[J]. Curr Opin Organ Transplant, 2022, 27(4):300-304.
[2]
Liu H, Man K. Man new insights in mechanisms and therapeutics for short- and long-term impacts of hepatic ischemia reperfusion injury post liver transplantation[J]. Int J Mol Sci, 2021, 22(15):8210.
[3]
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5):1060-1072.
[4]
Yamane D, Hayashi Y, Matsumoto M, et al. FADS2-dependent fatty acid desaturation dictates cellular sensitivity to ferroptosis and permissiveness for hepatitis C virus replication[J]. Cell Chem Biol, 2022, 29(5):799-810, e4.
[5]
Li J, Tao HS, Wang WQ, et al. The detection and verification of two heterogeneous subgroups and a risk model based on ferroptosis-related genes in hepatocellular carcinoma[J]. J Oncol, 2022:1182383.
[6]
Ong SY, Gurrin LC, Dolling L, et al. Reduction of body iron in HFE-related haemochromatosis and moderate iron overload (Mi-Iron): a multicentre, participant-blinded, randomised controlled trial[J]. Lancet Haematol, 2017, 4(12):e607-614.
[7]
Wang S, Liu Z, Geng J, et al. An overview of ferroptosis in non-alcoholic fatty liver disease[J]. Biomed Pharmacother, 2022(153):113374.
[8]
Wu J, Meng QH. Current understanding of the metabolism of micronutrients in chronic alcoholic liver disease[J]. World J Gastroenterol, 2020, 26(31):4567-4578.
[9]
Yamada N, Karasawa T, Kimura H, et al. Ferroptosis driven by radical oxidation of n-6 polyunsaturated fatty acids mediates acetaminophen-induced acute liver failure[J]. Cell Death Dis, 2020, 11(2):144.
[10]
Lillo-Moya J, Rojas-Sole C, Munoz-salamanca D, et al. Targeting ferroptosis against ischemia/reperfusion cardiac injury[J]. Antioxidants, 2021, 10(5):667.
[11]
Martin-Sanchez D, Fontecha-barriuso M, Martinez-Moreno JM, et al. Ferroptosis and kidney disease[J]. Nefrologia, 2020, 40(4):384-394.
[12]
Xu S, He Y, Lin L, et al. The emerging role of ferroptosis in intestinal disease[J]. Cell Death Dis, 2021, 12(4):289.
[13]
Yamada N, Karasawa T, Wakiya T, et al. Iron overload as a risk factor for hepatic ischemia-reperfusion injury in liver transplantation: potential role of ferroptosis[J]. Am J Transplant, 2020, 20(6):1606-1618.
[14]
Li YC, Cao YM, Xiao J, et al. Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung injury[J]. Cell Death Differ, 2020, 27(9):2635-2650.
[15]
Wang P, Cui Y, Ren Q, et al. Mitochondrial ferritin attenuates cerebral ischaemia/reperfusion injury by inhibiting ferroptosis[J]. Cell Death Dis, 2021, 12(5):447.
[16]
Stockwell BR, Jiang X, Gu W. Emerging mechanisms and disease relevance of ferroptosis[J]. Trends Cell Biol, 2020, 30(6):478-490.
[17]
Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy[J]. Protein Cell, 2021, 12(8):599-620.
[18]
Liu M, Kong XY, Yao Y, et al. The critical role and molecular mechanisms of ferroptosis in antioxidant systems: a narrative review[J]. Ann Transl Med, 2022, 10(6):368.
[19]
Bersuker K, Hendricks JM, Li ZP, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019, 575(7784):688-692.
[20]
Dixon SJ, Winter GE, Musavi LS, et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death[J]. ACS Chem Biol, 2015, 10(7):1604-1609.
[21]
Magtanong L, Ko PJ, To M, et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state[J]. Cell Chem Biol, 2019, 26(3):420-432, e9.
[22]
Feng H, Schorpp K, Jin J, et al. Transferrin receptor is a specific ferroptosis marker[J]. Cell Rep, 2020, 30(10):3411-3423, e7.
[23]
Mumbauer S, Pascual J, Kolotuev L, et al. Ferritin heavy chain protects the developing wing from reactive oxygen species and ferroptosis[J]. PLoS Genet, 2019, 15(9):e1008396.
[24]
Patel SJ, Frey AG, Palenchar DJ, et al. A PCBP1-BolA2 chaperone complex delivers iron for cytosolic [2Fe-2S] cluster assembly[J]. Nat Chem Biol, 2019, 15(9):872-881.
[25]
Wu S, Yang J, Sun GL, et al. Macrophage extracellular traps aggravate iron overload-related liver ischaemia/reperfusion injury[J]. Br J Pharmacol, 2021, 178(18):3783-3796.
[26]
Friedmann Angeli JP, Scheider M, Proneth B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice[J]. Nat Cell Biol, 2014, 16(12):1180-1191.
[27]
Ye J, Peng J, Liu KZ, et al. MCTR1 inhibits ferroptosis by promoting NRF2 expression to attenuate hepatic ischemia-reperfusion injury[J]. Am J Physiol Gastrointest Liver Physiol, 2022, 323(3):G283-293.
[28]
Li X, Wu LL, Tian X, et al. miR-29a-3p in exosomes from heme oxygenase-1 modified bone marrow mesenchymal stem cells alleviates steatotic liver ischemia-reperfusion injury in rats by suppressing ferroptosis via iron responsive element binding protein 2[J]. Oxid Med Cell Longev, 2022:6520789.
[29]
Wu Y, Jiao HK, Yue YB, et al. Ubiquitin ligase E3 HUWE1/MULE targets transferrin receptor for degradation and suppresses ferroptosis in acute liver injury[J]. Cell Death Differ, 2022, 29(9):1705-1718.
[30]
Weng W, Hu Z, Pan YF. Macrophage extracellular traps: current opinions and the state of research regarding various diseases[J].J Immunol Res, 2022:7050807.
[31]
Han J, Li H, Bhandari SW, et al. Maresin conjugates in tissue regeneration 1 improves alveolar fluid clearance by up-regulating alveolar ENaC, Na, K-ATPase in lipopolysaccharide-induced acute lung injury[J]. J Cell Mol Med, 2020, 24(8):4736-4747.
[32]
Dodson M, Castro-Portuguez R, Zhang DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis[J]. Redox Biol, 2019(23):101107.
[33]
Lou G, Chen Z, Zheng M, et al. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases[J]. Exp Mol Med, 2017, 49(6):e346.
[34]
Pegtel DM, Gould SJ. Exosomes[J]. Annu Rev Biochem, 2019(88):487-514.
[35]
Qi L, Xu XQ, Qi XP. The giant E3 ligase HUWE1 is linked to tumorigenesis, spermatogenesis, intellectual disability, and inflammatory diseases[J]. Front Cell Infect Microbiol, 2022(12):905906.
[1] 丁建民, 秦正义, 张翔, 周燕, 周洪雨, 王彦冬, 经翔. 超声造影与普美显磁共振成像对具有高危因素的≤3 cm肝结节进行LI-RADS分类诊断的前瞻性研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 930-938.
[2] 吕衡, 董理聪, 谢海琴, 赵卓非, 刘俐, 孙德胜. 基于CT-超声对照的肝脏局灶性病变超声漏诊状况分析:一项单中心横断面质量控制调查报告[J]. 中华医学超声杂志(电子版), 2023, 20(07): 712-716.
[3] 邵浩仁, 郭佳. 铁死亡的分子机制及其在前列腺癌治疗中的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 294-298.
[4] 赵世鸿, 陈键, 高嘉营, 金发光. 铁死亡在海水诱导支气管上皮细胞损伤中的作用研究[J]. 中华肺部疾病杂志(电子版), 2023, 16(06): 756-760.
[5] 彭进, 岳扬, 余德才. 基于Laennec膜指引多次肝脏手术后肝周粘连分离[J]. 中华腔镜外科杂志(电子版), 2023, 16(04): 243-245.
[6] 史亚波, 李扬, 黄长文. 缺血-再灌注损伤促进肝癌复发机制的研究进展[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 96-99.
[7] 唐灿, 李向阳, 秦浩然, 李婧, 王天云, 柯阳, 朱红. 原发性肝脏神经内分泌肿瘤单中心12例诊治与疗效分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 674-680.
[8] 韩宇, 张武, 李安琪, 陈文颖, 谢斯栋. MRI肝脏影像报告和数据系统对非肝硬化乙肝患者肝细胞癌的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 669-673.
[9] 李双喜, 胡宗凯, 赵静, 黄洁. 肝血管瘤治疗指征及治疗策略[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 504-510.
[10] 郭佳胤, 徐杰, 刘作金. 腹腔镜下ALPPS右半肝切除一例(附视频)[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 345-347.
[11] 胡欣欣, 孟晓凡, 郭兆安. 高血压肾病的发病机制研究进展[J]. 中华肾病研究电子杂志, 2023, 12(06): 339-343.
[12] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[13] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
[14] 吴钰娴, 冯亚园, 霍雷, 贾宁阳, 张娟. 原发性肝脏淋巴瘤的影像学诊断价值研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 349-353.
[15] 邓世栋, 刘凌志, 郭大勇, 王超, 黄忠欣, 张晖辉. 沉默SNHG1基因对膀胱癌细胞增殖、凋亡、迁移和铁死亡的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 804-811.
阅读次数
全文


摘要