切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2024, Vol. 13 ›› Issue (05) : 675 -681. doi: 10.3877/cma.j.issn.2095-3232.2024.05.015

临床研究

基于LPR和FARI构建肝衰竭患者生存预后模型
伍细蓉1, 徐立文1, 陈亚琼1,()   
  1. 1. 510630 广州,中山大学附属第三医院检验科
  • 收稿日期:2024-05-14 出版日期:2024-10-10
  • 通信作者: 陈亚琼

Prognosis model for patients with liver failure based on LPR and FARI

Xirong Wu1, Liwen Xu1, Yaqiong Chen1,()   

  1. 1. Clinical Laboratory, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
  • Received:2024-05-14 Published:2024-10-10
  • Corresponding author: Yaqiong Chen
引用本文:

伍细蓉, 徐立文, 陈亚琼. 基于LPR和FARI构建肝衰竭患者生存预后模型[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 675-681.

Xirong Wu, Liwen Xu, Yaqiong Chen. Prognosis model for patients with liver failure based on LPR and FARI[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2024, 13(05): 675-681.

目的

探讨淋巴细胞/凝血酶原时间比值(LPR)、纤维蛋白原/白蛋白比值(FARI)等实验室指标对肝衰竭预后的影响,并构建新的肝衰竭预后模型。

方法

回顾性分析2017年6月至2020年12月中山大学附属第三医院收治的1 114例肝衰竭患者临床资料。患者均签署知情同意书,符合医学伦理学规定。其中男899例,女215例;年龄18~90岁,中位年龄46岁。收集肝衰竭患者的首次入院时血液学指标、肝功能指标、凝血功能指标以及基本临床特征。以肝衰竭确诊后90 d内死亡为患者预后结局指标,按7∶3的比例将纳入的研究对象分为建模组与验证组,再采用Lasso回归分析筛选肝衰竭预后影响因子并用十折交叉法进行验证,将影响因子纳入Logistic回归构建预测模型。通过ROC曲线下面积(AUC)评估预测模型的区分度,Hosmer-Lemeshow(H-L)指数评价校准度。

结果

1 114例肝衰竭中90 d内死亡317例,病死率28.46%(317/1 114)。Lasso回归筛选LPR、凝血酶原活动度(PTA)、Na、TB、FARI、PT、中性粒细胞绝对值(NEU)、年龄(Age)是肝衰竭预后的重要影响因素,构建预测模型LPTFA,Logit P =-1.75-6.57×LPR(109/L·sec)-0.04×PTA(%)-0.006×Na(mmol/L)+0.001×TB(μmol/L)+0.08×FARI(%)+0.009×PT(sec)+0.03×NEU(109/L)+0.04×Age。绘制列线图预测肝衰竭患者90 d内死亡率,该模型特异度为0.74,敏感度为0.56。该模型AUC为0.704(95%CI:0.660~0.740),明显高于MELD评分AUC的0.612(95%CI:0.570~0.650)(Z=4.207,P<0.001)。验证组中LPTFA模型AUC为0.686(95%CI:0.62~0.75),亦明显优于MELD评分AUC的0.563(95%CI:0.490~0.640) (Z=3.143,P=0.001 7)。运用H-L指数验证,建模组P=0.41,验证组P=0.19,两组H-L指数均大于0.05,说明模型校准度较高。

结论

与MELD评分相比,基于LPR及FARI建立的肝衰竭预后预测模型具有更好的预测价值,是较为可靠的预测模型。

Objective

To evaluate the effects of laboratory indexes, such as lymphocyte-prothrombin time ratio (LPR) and fibrinogen-albumin ratio index (FARI), on clinical prognosis of liver failure, and to establish a novel prognostic model for liver failure.

Methods

Clinical data of 1 114 patients with liver failure admitted to the Third Affiliated Hospital of Sun Yat-sen University from June 2017 to December 2020 were retrospectively analyzed. The informed consents of all patients were obtained and the local ethical committee approval was received. Among them, 899 patients were male and 215 female, aged from 18 to90 years, with a median age of 46 years. Hematological indexes, liver function indexes, coagulation function indexes and baseline clinical characteristics of patients with liver failure upon the initial admission were collected. The 90-d mortality after the diagnosis of liver failure was considered as the prognostic outcome. All patients were divided into the modeling and validation groups according to the ratio of 7:3. The factors affecting clinical prognosis of liver failure were screened by Lasso regression analysis and subject to 10-fold cross-validation. The influencing factors were included in Logistic regression analysis to establish a prediction model. The area under the ROC curve (AUC) was used to evaluate the discrimination degree of this prediction model, and the Hosmer-Lemeshow (H-L) index was employed to evaluate the calibration degree.

Results

Among1 114 liver failure patients, 317 cases died within postoperative 90 d, with a mortality rate of 28.46%(317/1 114). Lasso regression analysis showed that LPR, prothrombin time activity (PTA), Na, TB, FARI, PT, absolute value of neutrophil (NEU) and age (Age) were critical prognostic factors of liver failure. A prediction model of LPTFA was established. Logit P=-1.75-6.57×LPR(109/L·sec)-0.04×PTA(%)-0.006×Na(mmol/L)+0.001×TB(μmol/L)+0.08×FARI(%)+0.009×PT(sec)+0.03×NEU(109/L)+0.04×Age. A nomogram was delineated to predict the 90-d mortality of patients with liver failure. The specificity and sensitivity of this model were 0.74 and 0.56. The AUC of this model was 0.704 (95%CI: 0.660-0.740), significantly higher than 0.612 (95%CI: 0.570-0.650) of MELD score (Z=4.207, P<0.001). In the validation group, the AUC of LPTFA model was 0.686 (95%CI: 0.620-0.750), significantly higher than 0.563 (95%CI: 0.49-0.64) of MELD score (Z=3.143, P=0.001 7). H-L index validated that P=0.41 in the modeling group, and P=0.19 in the validation group, and the H-L indexes in two groups were both greater than 0.05, indicating that the model calibration degree was relatively high.

Conclusions

Compared with MELD score, the prediction model for liver failure established based on LPR and FARI has better prediction value and is more reliable.

表1 生存组与死亡组肝衰竭患者一般资料比较
图1 Lasso回归模型筛选肝衰竭预测因子和十折交叉验证注:a为Lasso回归模型,b为十折交叉验证图
表2 肝衰竭预测因子筛选结果
图2 肝衰竭患者90 d内生存情况列线图注:LPR为淋巴细胞/凝血酶原时间比值,PTA为凝血酶原活动度,NEU为中性粒细胞绝对值,FARI为纤维蛋白原/白蛋白比值
图3 LPTFA预测模型的校准曲线图和ROC曲线注:a为建模组校准曲线图;b为验证组校准曲线图;c为建模组LPTFA预测模型和MELD评分ROC曲线;d为验证组LPTFA预测模型和MELD评分ROC曲线
[1]
中华医学会感染病学分会肝衰竭与人工肝学组, 中华医学会肝病学分会重型肝病与人工肝学组. 肝衰竭诊治指南(2018年版)[J]. 西南医科大学学报, 2019, 42(2):99-106.
[2]
Fernández J, Saliba F. Liver transplantation in patients with ACLF and multiple organ failure: time for priority after initial stabilization[J]. J Hepatol, 2018, 69(5):1004-1006.
[3]
Bernardi M, Moreau R, Angeli P, et al. Mechanisms of decompensation and organ failure in cirrhosis: from peripheral arterial vasodilation to systemic inflammation hypothesis[J]. J Hepatol, 2015, 63(5):1272-1284.
[4]
陈渊渊, 孟忠吉. 系统性炎症在慢加急性肝衰竭发病机制中的作用[J]. 中西医结合肝病杂志, 2021, 31(10):951-955.
[5]
Xu C, Yi Y, Xie Z, et al. Platelets, mean platelet volume, lymphocytes, leukocytes, and ratios of them altered in patients with hepatitis B virus-related decompensated cirrhosis[J]. Precis Med Sci, 2022, 11(2):46-50.
[6]
Zhang S, Luan X, Zhang W, et al. Platelet-to-lymphocyte and neutrophil-to-lymphocyte ratio as predictive biomarkers for early-onset neonatal sepsis[J]. J Coll Physicians Surg Pak, 2021, 31(7): 821-824.
[7]
Wen S, Chen Y, Hu C, et al. Combination of tertiary lymphoid structure and neutrophil-to-lymphocyte ratio predicts survival in patients with hepatocellular carcinoma[J]. Front Immunol, 2021, 12: 788640.
[8]
Wang YY, Liu ZZ, Xu D, et al. Fibrinogen-albumin ratio index (FARI): a more promising inflammation-based prognostic marker for patients undergoing hepatectomy for colorectal liver metastases[J]. Ann Surg Oncol, 2019, 26(11):3682-3692.
[9]
Lu S, Liu Z, Zhou X, et al. Preoperative fibrinogen-albumin ratio index (FARI) is a reliable prognosis and chemoradiotherapy sensitivity predictor in locally advanced rectal cancer patients undergoing radical surgery following neoadjuvant chemoradiotherapy[J]. Cancer Manag Res, 2020, 12:8555-8568.
[10]
郑田, 林帆. 纤维蛋白原与清蛋白比值指数对胃间质瘤危险程度分级的预测价值[J]. 福建医药杂志, 2020, 42(4):9-13.
[11]
周林, 潘立超, 史宪杰, 等. MELD评价体系对肝移植受者选择的多中心临床研究进展[J]. 器官移植, 2017, 8(2):174-178.
[12]
张冬青, 郑瑞丹, 林明华, 等. HBV相关慢加急性肝衰竭患者90天预后影响因素分析[J]. 临床肝胆病杂志, 2021, 37(10):2316-2319.
[13]
苗菁, 王玲玲, 高小焱, 等. 基于LASSO-Logistic回归的脑梗死患者30d非计划性再入院预测模型的构建[J]. 农垦医学, 2022, 44(5): 385-390.
[14]
李影, 韩可兴, 苏倩, 等. 基于Lasso回归的慢性乙型肝炎发生肝硬化列线图预测模型的构建[J]. 世界华人消化杂志, 2023, 31(7): 282-289.
[15]
Garcia-Carretero R, Vigil-Medina L, Barquero-Perez O, et al. Logistic LASSO and elastic net to characterize vitamin D deficiency in a hypertensive obese population[J]. Metab Syndr Relat Disord, 2020, 18(2):79-85.
[16]
丘穗珊, 刘慧, 薛莲芳. 基于LASSO-logistic回归建立住院患者MRSA血流感染的预测模型[J]. 暨南大学学报(自然科学与医学版), 2023, 44(5):556-562.
[17]
韩红娟, 秦瑶, 乔果果, 等. 基于Lasso Cox回归模型的早期阿尔茨海默病转归预测研究[J]. 中华疾病控制杂志, 2023, 27(8):907-915.
[18]
胡纯严, 胡良平. 合理进行多重Logistic回归分析——结合ROC曲线分析[J]. 四川精神卫生, 2022, 35(6):493-499.
[19]
龚娇, 孙恒昌, 胡波. 列线图在肿瘤风险预测和预后评估中的应用[J]. 中华检验医学杂志, 2020, 43(6):614-618.
[20]
周亮亮, 张凤芹. 慢性肾功能衰竭患者连续性血液透析治疗后2年内死亡的危险因素及列线图预测模型的构建[J]. 广西医学, 2023, 45(12):1432-1438.
[21]
安全明, 缪莉莉, 王磊, 等. 结合p53构建胃癌根治术后患者生存率的列线图预测模型[J]. 中国肿瘤, 2023, 32(5):394-400.
[22]
石萍, 曹丽, 吕德珍. 基于全身免疫炎症指数和预后营养指数的列线图模型在肝移植术后急性肾损伤的预测价值探讨[J]. 安徽医药, 2024, 28(1):80-84.
[23]
Boaro CM, Diefenthäeler LM, da Costa GK, et al. Hematological ratios as prognostic indicators in patients with triple-negative breast cancer in southern Brazil[J]. Mastology, 2022, 32:e20210059.
[24]
张茂林, 杨芳, 金相任, 等. 基于术前与术后中性粒细胞-淋巴细胞比值的组合预测胃癌患者的预后[J]. 现代肿瘤医学, 2024, 32(4): 672-678.
[25]
秦娇, 王林. 中性粒细胞-淋巴细胞比值对乙型肝炎相关慢加急性肝衰竭患者的90 d死亡预测价值[J/OL]. 现代医学与健康研究电子杂志, 2023, 7(13):121-124.
[26]
刘影, 李淑芹, 李莎, 等. 血小板/淋巴细胞比值和中性粒细胞/淋巴细胞比值与肝衰竭预后相关性研究[J]. 胃肠病学和肝病学杂志, 2019, 28(5):546-551.
[27]
江丽萍, 陈阮琴, 陈明胜. 纤维蛋白原是影响HBV相关慢加急性肝衰竭近期预后的独立危险因素[J]. 肝脏, 2020, 25(10):1090-1093.
[28]
叶宗伟, 杨毅宁. 血清C反应蛋白、白蛋白及其比值在炎症相关性疾病中的进展[J]. 医学综述, 2017, 23(20):3979-3983, 3988.
[29]
董少雨, 孙长宇, 乔芳芳, 等. 年龄和D-二聚体联合终末期肝病模型对HBV相关慢加急性肝衰竭患者预后的预测价值[J]. 临床肝胆病杂志, 2022, 38(11):2478-2482.
[30]
卢萌萌, 周新民. 血清胱抑素C联合总胆红素对慢加急性肝衰竭患者短期预后的预测价值[J]. 肝脏, 2017, 22(3):205-209.
[31]
曹玲, 王崇慧, 占国清. HBV相关慢加急性肝衰竭患者血清钠与病情严重程度的关系[J]. 湖北医药学院学报, 2015, 34(4):357-360.
[1] 曹雨欣, 毛卓君, 梁嘉赫, 伊江浦, 张泽凯, 马文帅, 陈云涛, 李晓倩, 张宇新, 曹铁生, 袁丽君. 3D打印心脏模型在模拟左心耳封堵术临床教学中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 602-607.
[2] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[3] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[4] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[5] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
[6] 屈翔宇, 张懿刚, 李浩令, 邱天, 谈燚. USP24及其共表达肿瘤代谢基因在肝细胞癌中的诊断和预后预测作用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 659-662.
[7] 顾雯, 凌守鑫, 唐海利, 甘雪梅. 两种不同手术入路在甲状腺乳头状癌患者开放性根治性术中的应用比较[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 687-690.
[8] 贺斌, 马晋峰. 胃癌脾门淋巴结转移危险因素[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 694-699.
[9] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[10] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[11] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[12] 董佳, 王坤, 张莉. 预后营养指数结合免疫球蛋白、血糖及甲胎蛋白对HBV 相关慢加急性肝衰竭患者治疗后预后不良的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 555-559.
[13] 王景明, 王磊, 许小多, 邢文强, 张兆岩, 黄伟敏. 腰椎椎旁肌的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 846-852.
[14] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[15] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 722-728.
阅读次数
全文


摘要