切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2025, Vol. 14 ›› Issue (03) : 387 -394. doi: 10.3877/cma.j.issn.2095-3232.2025.03.009

临床研究

不可切除肝癌转化治疗后手术的影响因素及预测模型构建
张宏斌1,2, 杨振宇1, 谭凯1, 刘冠1, 尚磊3, 杜锡林1,()   
  1. 1. 710038 西安,空军军医大学第二附属医院普通外科
    2. 732750 兰州,解放军63600部队医院普通外科
    3. 710032 西安,空军军医大学军事预防医学系军队卫生统计学教研室
  • 收稿日期:2024-10-18 出版日期:2025-06-10
  • 通信作者: 杜锡林
  • 基金资助:
    陕西省自然科学基金(2022JQ-815)

Influencing factors and prediction model for surgery in patients with unresectable hepatocellular carcinoma after conversion treatments

Hongbin Zhang1,2, Zhenyu Yang1, Kai Tan1, Guan Liu1, Lei Shang3, Xilin Du1,()   

  1. 1. Department of General Surgery,the Second Affiliated Hospital of Air Force Medical University,Xi'an 710038,China
    2. Department of General Surgery,63600 Hospital of PLA,Lanzhou 732750,China
    3. Military Health Statistics Room,Department of Military Preventive Medicine,Air Force Medical University,Xi'an 710032,China
  • Received:2024-10-18 Published:2025-06-10
  • Corresponding author: Xilin Du
引用本文:

张宏斌, 杨振宇, 谭凯, 刘冠, 尚磊, 杜锡林. 不可切除肝癌转化治疗后手术的影响因素及预测模型构建[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(03): 387-394.

Hongbin Zhang, Zhenyu Yang, Kai Tan, Guan Liu, Lei Shang, Xilin Du. Influencing factors and prediction model for surgery in patients with unresectable hepatocellular carcinoma after conversion treatments[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2025, 14(03): 387-394.

目的

探讨不可切除肝细胞癌(uHCC)患者介入联合靶向免疫转化治疗后手术的影响因素,并构建列线图预测模型。

方法

回顾性分析2022年1月至2024年6月空军军医大学第二附属医院收治的190例初诊为uHCC患者的临床资料。患者均签署知情同意书,符合医学伦理规定。其中男163例,女27例;年龄31~75岁,中位年龄55岁。患者均采用介入联合靶向免疫治疗。Lasso回归筛选uHCC转化手术的预测因素,按照7∶3比例将全组患者分入训练集(133例)和测试集(57例),采用Logistic回归方法基于预测因素在训练集中构建列线图预测模型。分别采用ROC曲线、校准曲线和临床决策曲线分析模型的区分度、校准度和临床适用性。

结果

共有51例患者转化成功手术治疗,总体转化手术率为26.8%。Lasso和Logistic回归分析最终共筛选出4个因素,分别为美国东部肿瘤协作组-体能状态(ECOG-PS)评分、肝硬化、C-反应蛋白与白蛋白比值(CAR)和中性粒细胞与淋巴细胞比值(NLR)。基于以上4个因素在训练集中建立预测模型并绘制列线图。列线图在训练集和测试集中ROC曲线下面积(AUC)分别为0.784(95%CI:0.699~0.869)、0.806(95%CI:0.693~0.920),提示该模型有良好的区分度。校准曲线和Hosmer-Lemeshow 拟合优度检验一致表明,该模型有较高的校准度(χ2=7.410,P=0.493)。分别在训练集和测试集中绘制临床决策曲线,结果显示该预测模型具有良好的临床净收益率。

结论

ECOG-PS评分、肝硬化、CAR、NLR是初治uHCC患者接受介入联合靶向免疫治疗后转化手术的影响因素,基于上述影响因素建立的列线图具有较好的预测能力。

Objective

To investigate the influencing factors for surgery in patients with unresectable hepatocellular carcinoma (uHCC) after interventional therapy combined with targeted immunotherapy, and to construct a nomogram prediction model.

Methods

Clinical data of 190 patients with newly-diagnosed uHCC admitted to the Second Affiliated Hospital of Air Force Medical University from January 2022 to June 2024 were retrospectively analyzed. The informed consents of all patients were obtained and the local ethical committee approval was received. Among them, 163 patients were male and 27 female,aged from 31 to 75 years, with a median age of 55 years. The patients were received interventional therapy combined with targeted immunotherapy. The predictive factors for surgical conversion uHCC were screened by Lasso regression. According to the ratio of 7:3, all patients were divided into the training set (n=133) and test set (n=57). A nomogram prediction model was constructed in the training set based on the predictive factors by using Logistic regression analysis. ROC curve, calibration curve and clinical decision curve were drawn to assess the degree of discrimination, calibration and clinical applicability of this model.

Results

A total of 51 patients were successfully converted to resection, and the overall conversion rate was 26.8%.Finally, 4 factors were identified by Lasso and Logistic regression analyses, including the Eastern Cooperative Oncology Group-Performance Status (ECOG-PS) score, liver cirrhosis, C-reactive protein-to-albumin (CAR)ratio and neutrophil-to-lymphocyte ratio (NLR). Based on these 4 factors, a prediction model was constructed and a nomogram was drawn in the training set. The area under the ROC curve (AUC) of this nomogram in the training and testing sets was 0.784 (95%CI: 0.699-0.869) and 0.806 (95%CI: 0.693-0.920), respectively indicating that a high degree of discrimination. Both the calibration curve and Hosmer-Lemeshow goodnessof-fit test showed that the model had a high degree of calibration (χ2=7.410, P=0.493). The clinical decision curves were delineated in the training and test sets, revealing that the prediction model yielded high net clinical benefit.

Conclusions

ECOG-PS score, liver cirrhosis, CAR and NLR are the influencing factors of newly-diagnosed uHCC patients receiving interventional therapy combined with targeted immunotherapy before conversion to surgery. The nomogram based on these influencing factors has high predictive capability.

表1 51例转化成功uHCC患者疗效 [例(%)]
图1 单一临床因素预测uHCC转化手术的AUC值
图2 Lasso回归筛选uHCC转化手术影响因素
表2 uHCC转化手术的Logistic单因素及多因素分析
图3 预测接受三联治疗uHCC患者转化手术列线图
图4 uHCC转化手术预测模型分别在训练集和测试集中的ROC曲线
图5 uHCC转化手术预测模型分别在训练集和测试集中的校准曲线
图6 uHCC转化手术预测模型分别在训练集和测试集中的DCA曲线
[1]
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263.DOI: 10.3322/caac.21834.
[2]
Forner A, Reig M, Bruix J. Hepatocellular carcinoma[J]. Lancet,2018, 391(10127): 1301-1314. DOI: 10.1016/s0140-6736(18)30010-2.
[3]
Brown ZJ, Tsilimigras DI, Ruff SM, et al. Management of hepatocellular carcinoma: a review[J]. JAMA Surg, 2023, 158(4):410-420.DOI: 10.1001/jamasurg.2022.7989.
[4]
Vogel A, Meyer T, Sapisochin G, et al. Hepatocellular carcinoma[J].Lancet, 2022, 400(10360): 1345-1362. DOI: 10.1016/s0140-6736(22)01200-4.
[5]
Singal AG, Llovet JM, Yarchoan M, et al. AASLD practice guidance on prevention, diagnosis, and treatment of hepatocellular carcinoma[J]. Hepatology, 2023, 78(6): 1922-1965. DOI: 10.1097/HEP.0000000000000466.
[6]
Xie DY, Zhu K, Ren ZG, et al. A review of 2022 Chinese clinical guidelines on the management of hepatocellular carcinoma: updates and insights[J]. Hepatobiliary Surg Nutr, 2023, 12(2): 216-228. DOI:10.21037/hbsn-22-469.
[7]
Sun HC, Zhou J, Wang Z, et al. Chinese expert consensus on conversion therapy for hepatocellular carcinoma (2021 edition)[J].Hepatobiliary Surg Nutr, 2022, 11(2): 227-252. DOI: 10.21037/hbsn-21-328.
[8]
Xu B, Zhu XD, Shen YH, et al. Criteria for identifying potentially resectable patients with initially oncologically unresectable hepatocellular carcinoma before treatment with lenvatinib plus an anti-PD-1 antibody[J]. Front Immunol, 2022, 13: 1016736. DOI:10.3389/fimmu.2022.1016736.
[9]
Huang C, Zhu XD, Shen YH, et al. Organ specific responses to firstline lenvatinib plus anti-PD-1 antibodies in patients with unresectable hepatocellular carcinoma: a retrospective analysis[J]. Biomark Res,2021, 9(1): 19. DOI: 10.1186/s40364-021-00274-z.
[10]
Wu SJ, Ruan DD, Wu QY, et al. Safety and efficacy of drug-eluting bead transarterial chemoembolization combined with lenvatinib and anti-PD-1 antibodies for unresectable hepatocellular carcinoma: a retrospective analysis[J]. J Hepatocell Carcinoma, 2023, 10: 807-820.DOI: 10.2147/JHC.S408819.
[11]
Chuma M, Yokoo H, Hiraoka A, et al. Identification of CT values that could be predictive of necrosis (N-CTav) in hepatocellular carcinoma after lenvatinib treatment[J]. Curr Oncol, 2022, 29(5): 3259-3271.DOI: 10.3390/curroncol29050266.
[12]
Zhu C, Dai B, Zhan H, et al. Neoadjuvant transarterial chemoembolization (TACE) plus PD-1 inhibitor bridging to tumor resection in intermediate-stage hepatocellular carcinoma patients[J].Ir J Med Sci, 2023, 192(3): 1065-1071. DOI: 10.1007/s11845-022-03131-6.
[13]
Liu BJ, Gao S, Zhu X, et al. Real-world study of hepatic artery infusion chemotherapy combined with anti-PD-1 immunotherapy and tyrosine kinase inhibitors for advanced hepatocellular carcinoma[J].Immunotherapy, 2021, 13(17): 1395-1405. DOI: 10.2217/imt-2021-0192.
[14]
Arita J, Ichida A, Nagata R, et al. Conversion surgery after preoperative therapy for advanced hepatocellular carcinoma in the era of molecular targeted therapy and immune checkpoint inhibitors[J].J Hepatobiliary Pancreat Sci, 2022, 29(7): 732-740. DOI: 10.1002/jhbp.1135.
[15]
Shindoh J, Kawamura Y, Kobayashi Y, et al. Prognostic impact of surgical intervention after lenvatinib treatment for advanced hepatocellular carcinoma[J]. Ann Surg Oncol, 2021, 28(12): 7663-7672. DOI: 10.1245/s10434-021-09974-0.
[16]
Zhang T, Merle P, Wang H, et al. Combination therapy for advanced hepatocellular carcinoma: do we see the light at the end of the tunnel?[J]. Hepatobiliary Surg Nutr, 2021, 10(2): 180-192. DOI:10.21037/hbsn-2021-7.
[17]
Zhang J, Zhang X, Mu H, et al. Surgical conversion for initially unresectable locally advanced hepatocellular carcinoma using a triple combination of angiogenesis inhibitors, anti-PD-1 antibodies,and hepatic arterial infusion chemotherapy: a retrospective study[J]. Front Oncol, 2021, 11: 729764. DOI: 10.3389/fonc.2021.729764.
[18]
Xu J, Zhang Y, Jia R, et al. Anti-PD-1 antibody SHR-1210 combined with apatinib for advanced hepatocellular carcinoma, gastric, or esophagogastric junction cancer: an open-label, dose escalation and expansion study[J]. Clin Cancer Res, 2019, 25(2): 515-523. DOI: 10.1158/1078-0432.CCR-18-2484.
[19]
Finn RS, Ikeda M, Zhu AX, et al. Phase ib study of lenvatinib plus pembrolizumab in patients with unresectable hepatocellular carcinoma[J]. J Clin Oncol, 2020, 38(26): 2960-2970. DOI: 10.1200/jco.20.00808.
[20]
Wang MD, Xu XJ, Wang KC, et al. Conversion therapy for advanced hepatocellular carcinoma in the era of precision medicine: current status, challenges and opportunities[J]. Cancer Sci, 2024, 115(7):2159-2169. DOI: 10.1111/cas.16194.
[21]
Yang YM, Kim SY, Seki E. Inflammation and liver cancer: molecular mechanisms and therapeutic targets[J]. Semin Liver Dis, 2019, 39(1):26-42. DOI: 10.1055/s-0038-1676806.
[22]
Sangro B, Melero I, Wadhawan S, et al. Association of inflammatory biomarkers with clinical outcomes in nivolumab-treated patients with advanced hepatocellular carcinoma[J]. J Hepatol, 2020, 73(6): 1460-1469. DOI: 10.1016/j.jhep.2020.07.026.
[23]
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J].Cell, 2011, 144(5): 646-674. DOI: 10.1016/j.cell.2011.02.013.
[24]
Greten FR, Grivennikov SI. Inflammation and cancer: triggers,mechanisms, and consequences[J]. Immunity, 2019, 51(1): 27-41.DOI: 10.1016/j.immuni.2019.06.025.
[25]
McMillan DC. Systemic inflammation, nutritional status and survival in patients with cancer[J]. Curr Opin Clin Nutr Metab Care, 2009, 12(3): 223-226. DOI: 10.1097/MCO.0b013e32832a 7902.
[26]
Li Y, Jia H, Yu W, et al. Nomograms for predicting prognostic value of inflammatory biomarkers in colorectal cancer patients after radical resection[J]. Int J Cancer, 2016, 139(1): 220-231. DOI: 10.1002/ijc.30071.
[27]
Iwahasi S, Rui F, Morine Y, et al. Hepatic stellate cells contribute to the tumor malignancy of hepatocellular carcinoma through the IL-6 pathway[J]. Anticancer Res, 2020, 40(2): 743-749. DOI: 10.21873/anticanres.14005.
[28]
Pacelli F, Bossola M, Rosa F, et al. Is malnutrition still a risk factor of postoperative complications in gastric cancer surgery?[J]. Clin Nutr,2008, 27(3): 398-407. DOI: 10.1016/j.clnu.2008.03.002.
[29]
Kinoshita A, Onoda H, Imai N, et al. The C-reactive protein/albumin ratio, a novel inflammation-based prognostic score, predicts outcomes in patients with hepatocellular carcinoma[J]. Ann Surg Oncol, 2015,22(3): 803-810. DOI: 10.1245/s10434-014-4048-0.
[30]
Pinato DJ, North BV, Sharma R. A novel, externally validated inflammation-based prognostic algorithm in hepatocellular carcinoma:the prognostic nutritional index (PNI)[J]. Br J Cancer, 2012, 106(8):1439-1445. DOI: 10.1038/bjc.2012.92.
[31]
Huang J, Xu L, Luo Y, et al. The inflammation-based scores to predict prognosis of patients with hepatocellular carcinoma after hepatectomy[J]. Med Oncol, 2014, 31(4): 883. DOI: 10.1007/s12032-014-0883-x.
[32]
Shen Y, Wang H, Li W, et al. Prognostic significance of the CRP/Alb and neutrophil to lymphocyte ratios in hepatocellular carcinoma patients undergoing TACE and RFA[J]. J Clin Lab Anal, 2019, 33(9):e22999. DOI: 10.1002/jcla.22999.
[1] 王琪, 杨春凤, 宋宏萍, 许磊. 2021 至2023 年陕西省渭北农村地区基于超声的乳腺癌筛查结果及影响因素分析[J/OL]. 中华医学超声杂志(电子版), 2025, 22(02): 106-113.
[2] 王昕玥, 袁亚, 束华, 曹琨芃, 叶新华, 李璐. 基于LightGBM 算法构建超声引导下凝血酶治疗假性动脉瘤剂量预测模型[J/OL]. 中华医学超声杂志(电子版), 2025, 22(02): 153-161.
[3] 余静雅, 石玉兰, 向利娟, 陈城, 罗钰堞. 老年慢性创面患者衰弱现状及影响因素分析[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(02): 141-147.
[4] 赵海涛. 进展期胆管癌治疗探索及展望[J/OL]. 中华普通外科学文献(电子版), 2025, 19(02): 110-110.
[5] 卢超, 陈波, 邢志祥, 周鹏, 王帅. 不同入路下腹腔镜解剖性肝脏切除术治疗肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(03): 254-257.
[6] 袁强, 张华宇, 闫璋哲, 朱含放, 陈光, 孙亮, 吕远, 陈纲, 赵锁. cN0峡部偏侧甲状腺乳头状癌中央区淋巴结转移的术前预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(03): 333-336.
[7] 朱宗恒, 张志火. 甲状腺乳头状癌对侧中央区淋巴结转移的危险因素分析及预测模型构建[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(03): 337-340.
[8] 韦洋, 赵远权, 王小波, 黄海, 陈洁. BCLC 0/A期肝细胞癌患者术后辅助治疗后早期复发风险分析及预测模型建立[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(02): 157-161.
[9] 张志昱, 张凡, 周奇, 欧阳骏, 林宇鑫, 张学锋. 术前炎性指标对肾透明细胞癌WHO/ISUP病理分级的预测价值[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(03): 323-328.
[10] 刘志静, 马婧, 王利颖, 李朋, 张亚楠, 陈童真. 终末期肺癌患者癌因性疲乏及影响因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 310-314.
[11] 龙吟, 何晓东, 廖建国, 黄珏, 张磊. 高复发风险肝癌患者术后靶向免疫治疗的安全性及疗效[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(03): 379-386.
[12] 丁志文, 赵一鸣, 王鲁. 肝内胆管癌手术与综合治疗[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(02): 187-196.
[13] 吴春霖, 侯一夫, 陈凯, 赵冀, 唐世杰, 杨洪吉. 肝动脉灌注化疗联合PD-1/TKI 治疗不可切除性肝癌的安全性和疗效[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(02): 217-224.
[14] 邓玮, 周筛兰, 杨波, 林志亮. 肠道菌群移植治疗便秘患者出院准备度现状及影响因素分析[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(02): 148-154.
[15] 王开宇, 郭天宇, 李娜, 白静慧, 张雷, 金号然, 张睿, 刘也夫. 机器人辅助腹腔镜左半结肠切除联合肝右后叶转移瘤切除一例(附视频)[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(02): 189-192.
阅读次数
全文


摘要