[1] |
Petrov MS, Yadav D. Global epidemiology and holistic prevention of pancreatitis[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(3): 175-184.DOI: 10.1038/s41575-018-0087-5.
|
[2] |
Mederos MA, Reber HA, Girgis MD. Acute pancreatitis: a review[J].JAMA, 2021, 325(4): 382-390. DOI: 10.1001/jama.2020.20317.
|
[3] |
Banks PA, Bollen TL, Dervenis C, et al. Classification of acute pancreatitis—2012: revision of the Atlanta classification and definitions by international consensus[J]. Gut, 2013, 62(1): 102-111.DOI: 10.1136/gutjnl-2012-302779.
|
[4] |
Jain S, Mahapatra SJ, Gupta S, et al. Infected pancreatic necrosis due to multidrug-resistant organisms and persistent organ failure predict mortality in acute pancreatitis[J]. Clin Transl Gastroenterol, 2018,9(10): 190. DOI: 10.1038/s41424-018-0056-x.
|
[5] |
Girdhar K, Soto M, Huang Q, et al. Gut microbiota regulate pancreatic growth, exocrine function, and gut hormones[J]. Diabetes,2022, 71(5): 945-960. DOI: 10.2337/db21-0382.
|
[6] |
Wang Z, Li F, Liu J, et al. Intestinal microbiota - an unmissable bridge to severe acute pancreatitis-associated acute lung injury[J]. Front Immunol, 2022, 13: 913178. DOI: 10.3389/fimmu.2022.913178.
|
[7] |
Adak A, Khan MR. An insight into gut microbiota and its functionalities[J]. Cell Mol Life Sci, 2019, 76(3): 473-493. DOI:10.1007/s00018-018-2943-4.
|
[8] |
Sun C, Dong S, Chen W, et al. Berberine alleviates Alzheimer’s disease by regulating the gut microenvironment, restoring the gut barrier and brain-gut axis balance[J]. Phytomedicine, 2024, 129:155624. DOI: 10.1016/j.phymed.2024.155624.
|
[9] |
Thomas RM, Jobin C. Microbiota in pancreatic health and disease:the next frontier in microbiome research[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(1): 53-64. DOI: 10.1038/s41575-019-0242-7.
|
[10] |
Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285):59-65. DOI: 10.1038/nature08821.
|
[11] |
Turner JR. Intestinal mucosal barrier function in health and disease[J].Nat Rev Immunol, 2009, 9(11): 799-809. DOI: 10.1038/nri2653.
|
[12] |
Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis[J]. Nat Rev Immunol, 2014, 14(3):141-153. DOI: 10.1038/nri3608.
|
[13] |
Kurashima Y, Kiyono H. Mucosal ecological network of epithelium and immune cells for gut homeostasis and tissue healing[J].Annu Rev Immunol, 2017, 35: 119-147. DOI: 10.1146/annurevimmunol-051116-052424.
|
[14] |
Fu Y, Mei Q, Yin N, et al. Paneth cells protect against acute pancreatitis via modulating gut microbiota dysbiosis[J]. mSystems,2022, 7(3): e0150721. DOI: 10.1128/msystems.01507-21.
|
[15] |
Yin N, Xu B, Huang Z, et al. Inhibition of Pck1 in intestinal epithelial cells alleviates acute pancreatitis via modulating intestinal homeostasis[J]. FASEB J, 2024, 38(8): e23618. DOI: 10.1096/fj.202400039R.
|
[16] |
Wu H, Xie S, Miao J, et al. Lactobacillus reuteri maintains intestinal epithelial regeneration and repairs damaged intestinal mucosa[J]. Gut Microbes, 2020, 11(4): 997-1014. DOI: 10.1080/19490976.2020.1734423.
|
[17] |
Zhao L, Xie Q, Evivie SE, et al. Bifidobacterium dentium N8 with potential probiotic characteristics prevents LPS-induced intestinal barrier injury by alleviating the inflammatory response and regulating the tight junction in Caco-2 cell monolayers[J]. Food Funct, 2021,12(16): 7171-7184. DOI: 10.1039/d1fo01164b.
|
[18] |
Paone P, Cani PD. Mucus barrier, mucins and gut microbiota: the expected slimy partners?[J]. Gut, 2020, 69(12): 2232-2243. DOI:10.1136/gutjnl-2020-322260.
|
[19] |
Breugelmans T, Oosterlinck B, Arras W, et al. The role of mucins in gastrointestinal barrier function during health and disease[J]. Lancet Gastroenterol Hepatol, 2022, 7(5): 455-471. DOI: 10.1016/S2468-1253(21)00431-3.
|
[20] |
Shimizu K, Ojima M, Ogura H. Gut microbiota and probiotics/synbiotics for modulation of immunity in critically ill patients[J].Nutrients, 2021, 13(7): 2439. DOI: 10.3390/nu13072439.
|
[21] |
Gustafsson JK, Johansson MEV. The role of goblet cells and mucus in intestinal homeostasis[J]. Nat Rev Gastroenterol Hepatol, 2022,19(12): 785-803. DOI: 10.1038/s41575-022-00675-x.
|
[22] |
Yu S, Xiong Y, Fu Y, et al. Shotgun metagenomics reveals significant gut microbiome features in different grades of acute pancreatitis[J]. Microb Pathog, 2021, 154: 104849. DOI: 10.1016/j.micpath.2021.104849.
|
[23] |
Sovran B, Hugenholtz F, Elderman M, et al. Age-associated impairment of the mucus barrier function is associated with profound changes in microbiota and immunity[J]. Sci Rep, 2019, 9(1): 1437.DOI: 10.1038/s41598-018-35228-3.
|
[24] |
Hao W, Hao C, Wu C, et al. Aluminum induced intestinal dysfunction via mechanical, immune, chemical and biological barriers[J].Chemosphere, 2022, 288(Pt 2): 132556. DOI: 10.1016/j.chemosphere.2021.132556.
|
[25] |
Hand TW, Reboldi A. Production and function of immunoglobulin A[J]. Annu Rev Immunol, 2021, 39: 695-718. DOI: 10.1146/annurevimmunol-102119-074236.
|
[26] |
Rollenske T, Burkhalter S, Muerner L, et al. Parallelism of intestinal secretory IgA shapes functional microbial fitness[J]. Nature, 2021,598(7882): 657-661. DOI: 10.1038/s41586-021-03973-7.
|
[27] |
Glaubitz J, Wilden A, Frost F, et al. Activated regulatory T-cells promote duodenal bacterial translocation into necrotic areas in severe acute pancreatitis[J]. Gut, 2023, 72(7): 1355-1369. DOI: 10.1136/gutjnl-2022-327448.
|
[28] |
Zhu Y, Wang X, Zhu L, et al. Lactobacillus rhamnosus GG combined with inosine ameliorates alcohol-induced liver injury through regulation of intestinal barrier and Treg/Th1 cells[J]. Toxicol Appl Pharmacol, 2022, 439: 115923. DOI: 10.1016/j.taap.2022.115923.
|
[29] |
Wei H, Wang JY. Role of polymeric immunoglobulin receptor in IgA and IgM transcytosis[J]. Int J Mol Sci, 2021, 22(5): 2284. DOI:10.3390/ijms22052284.
|
[30] |
Qiu YF, Ye J, Xie JJ, et al. Pancreatitis affects gut microbiota via metabolites and inflammatory cytokines: an exploratory two-step Mendelian randomisation study[J]. Mol Genet Genomics, 2024,299(1): 36. DOI: 10.1007/s00438-024-02125-6.
|
[31] |
Ammer-Herrmenau C, Pfisterer N, Weingarten MF, et al. The microbiome in pancreatic diseases: recent advances and future perspectives[J]. United European Gastroenterol J, 2020, 8(8): 878-885. DOI: 10.1177/2050640620944720.
|
[32] |
Frost F, Kacprowski T, Rühlemann M, et al. Impaired exocrine pancreatic function associates with changes in intestinal microbiota composition and diversity[J]. Gastroenterology, 2019, 156(4): 1010-1015. DOI: 10.1053/j.gastro.2018.10.047.
|
[33] |
Pan LL, Li BB, Pan XH, et al. Gut microbiota in pancreatic diseases:possible new therapeutic strategies[J]. Acta Pharmacol Sin, 2021,42(7): 1027-1039. DOI: 10.1038/s41401-020-00532-0.
|
[34] |
Liu J, Yan Q, Li S, et al. Integrative metagenomic and metabolomic analyses reveal the potential of gut microbiota to exacerbate acute pancreatitis[J]. NPJ Biofilms Microbiomes, 2024, 10(1): 29. DOI:10.1038/s41522-024-00499-4.
|
[35] |
Zou M, Yang Z, Fan Y, et al. Gut microbiota on admission as predictive biomarker for acute necrotizing pancreatitis[J]. Front Immunol, 2022, 13: 988326. DOI: 10.3389/fimmu.2022.988326.
|
[36] |
Wang Z, Guo M, Li J, et al. Composition and functional profiles of gut microbiota reflect the treatment stage, severity, and etiology of acute pancreatitis[J]. Microbiol Spectr, 2023, 11(5): e0082923. DOI:10.1128/spectrum.00829-23.
|
[37] |
Ammer-Herrmenau C, Antweiler KL, Asendorf T, et al. Gut microbiota predicts severity and reveals novel metabolic signatures in acute pancreatitis[J]. Gut, 2024, 73(3): 485-495. DOI: 10.1136/gutjnl-2023-330987.
|
[38] |
Severino A, Varca S, Airola C, et al. Antibiotic utilization in acute pancreatitis: a narrative review[J]. Antibiotics, 2023, 12(7): 1120.DOI: 10.3390/antibiotics12071120.
|
[39] |
Liu J, Luo M, Qin S, et al. Significant succession of intestinal bacterial community and function during the initial 72 hours of acute pancreatitis in rats[J]. Front Cell Infect Microbiol, 2022, 12: 808991.DOI: 10.3389/fcimb.2022.808991.
|
[40] |
Ciocan D, Rebours V, Voican CS, et al. Characterization of intestinal microbiota in alcoholic patients with and without alcoholic hepatitis or chronic alcoholic pancreatitis[J]. Sci Rep, 2018, 8(1): 4822. DOI:10.1038/s41598-018-23146-3.
|
[41] |
Hu X, Han Z, Zhou R, et al. Altered gut microbiota in the early stage of acute pancreatitis were related to the occurrence of acute respiratory distress syndrome[J]. Front Cell Infect Microbiol, 2023,13: 1127369. DOI: 10.3389/fcimb.2023.1127369.
|
[42] |
Tan YQ, Wang YN, Feng HY, et al. Host/microbiota interactionsderived tryptophan metabolites modulate oxidative stress and inflammation via aryl hydrocarbon receptor signaling[J]. Free Radic Biol Med, 2022, 184: 30-41. DOI: 10.1016/j.freeradbiomed.2022.03.025.
|
[43] |
Li H, Xie J, Guo X, et al. Bifidobacterium spp. and their metabolite lactate protect against acute pancreatitis via inhibition of pancreatic and systemic inflammatory responses[J]. Gut Microbes, 2022, 14(1):2127456. DOI: 10.1080/19490976.2022.2127456.
|
[44] |
Sendler M, van den Brandt C, Glaubitz J, et al. NLRP3 inflammasome regulates development of systemic inflammatory response and compensatory anti-inflammatory response syndromes in mice with acute pancreatitis[J]. Gastroenterology, 2020, 158(1): 253-269.e14.DOI: 10.1053/j.gastro.2019.09.040.
|
[45] |
Yazici C, Thaker S, Castellanos KK, et al. Diet, gut microbiome,and their end metabolites associate with acute pancreatitis risk[J].Clin Transl Gastroenterol, 2023, 14(7): e00597. DOI: 10.14309/ctg.0000000000000597.
|
[46] |
Mattke J, Darden CM, Lawrence MC, et al. Toll-like receptor 4 in pancreatic damage and immune infiltration in acute pancreatitis[J].Front Immunol, 2024, 15: 1362727. DOI: 10.3389/fimmu.2024.1362727.
|
[47] |
Sharif R, Dawra R, Wasiluk K, et al. Impact of toll-like receptor 4 on the severity of acute pancreatitis and pancreatitis-associated lung injury in mice[J]. Gut, 2009, 58(6): 813-819. DOI: 10.1136/gut.2008.170423.
|
[48] |
Mei QX, Fu Y, Huang ZH, et al. Intestinal TLR4 deletion exacerbates acute pancreatitis through gut microbiota dysbiosis and Paneth cells deficiency[J]. Gut Microbes, 2022, 14(1): 2112882. DOI:10.1080/19490976.2022.2112882.
|
[49] |
Gasaly N, de Vos P, Hermoso MA. Impact of bacterial metabolites on gut barrier function and host immunity: a focus on bacterial metabolism and its relevance for intestinal inflammation[J]. Front Immunol, 2021, 12: 658354. DOI: 10.3389/fimmu.2021.658354.
|
[50] |
Martin-Gallausiaux C, Marinelli L, Blottière HM, et al. SCFA:mechanisms and functional importance in the gut[J]. Proc Nutr Soc,2021, 80(1): 37-49. DOI: 10.1017/S0029665120006916.
|
[51] |
Xia H, Guo J, Shen J, et al. Ketogenic diet exacerbates L-arginineinduced acute pancreatitis and reveals the therapeutic potential of butyrate[J]. Nutrients, 2023, 15(20): 4427. DOI: 10.3390/nu15204427.
|
[52] |
Tran QT, Tran VH, Sendler M, et al. Role of bile acids and bile salts in acute pancreatitis: from the experimental to clinical studies[J].Pancreas, 2021, 50(1): 3-11. DOI: 10.1097/MPA.0000000000001706.
|
[53] |
Tran QT, Sendler M, Wiese ML, et al. Systemic bile acids affect the severity of acute pancreatitis in mice depending on their hydrophobicity and the disease pathogenesis[J]. Int J Mol Sci, 2022,23(21): 13592. DOI: 10.3390/ijms232113592.
|
[54] |
Tenner S, Vege SS, Sheth SG, et al. American college of gastroenterology guidelines: management of acute pancreatitis[J].Am J Gastroenterol, 2024, 119(3): 419-437. DOI: 10.14309/ajg.0000000000002645.
|
[55] |
Chan KS, Shelat VG. The ongoing debate on the use of prophylactic antibiotics in acute pancreatitis-is there a conclusion? A comprehensive narrative review[J]. Antibiotics, 2024, 13(5): 411.DOI: 10.3390/antibiotics13050411.
|
[56] |
李幼生.抗生素在重症急性胰腺炎治疗中的合理应用:争议与进展[J].中华医学杂志,2021, 101(30): 2346-2348. DOI:10.3760/cma.j.cn112137-20210307-00580.Li YS. Rational use of antibiotics in severe acute pancreatitis:controversy and progress[J]. Zhonghua Yi Xue Za Zhi, 2021, 101(30):2346-2348. DOI: 10.3760/cma.j.cn112137-20210307-00580.
|
[57] |
Poropat G, Goričanec K, Lacković A, et al. Systematic review with trial sequential analysis of prophylactic antibiotics for acute pancreatitis[J]. Antibiotics, 2022, 11(9): 1191. DOI: 10.3390/antibiotics11091191.
|
[58] |
Ding N, Sun YH, Wen LM, et al. Assessment of prophylactic antibiotics administration for acute pancreatitis: a meta-analysis of randomized controlled trials[J]. Chin Med J, 2020, 133(2): 212-220.DOI: 10.1097/CM9.0000000000000603.
|
[59] |
Huang FC, Lu YT, Liao YH. Beneficial effect of probiotics on Pseudomonas aeruginosa-infected intestinal epithelial cells through inflammatory IL-8 and antimicrobial peptide human betadefensin-2 modulation[J]. Innate Immun, 2020, 26(7): 592-600. DOI:10.1177/1753425920959410.
|
[60] |
Pan LL, Niu W, Fang X, et al. Clostridium butyricum strains suppress experimental acute pancreatitis by maintaining intestinal homeostasis[J]. Mol Nutr Food Res, 2019, 63(13): e1801419. DOI:10.1002/mnfr.201801419.
|
[61] |
Snigdha S, Ha K, Tsai P, et al. Probiotics: potential novel therapeutics for microbiota-gut-brain axis dysfunction across gender and lifespan[J]. Pharmacol Ther, 2022, 231: 107978. DOI: 10.1016/j.pharmthera.2021.107978.
|
[62] |
Roe AL, Boyte ME, Elkins CA, et al. Considerations for determining safety of probiotics: a USP perspective[J]. Regul Toxicol Pharmacol,2022, 136: 105266. DOI: 10.1016/j.yrtph.2022.105266.
|
[63] |
Wang M, Xie X, Zhao S, et al. Fecal microbiota transplantation for irritable bowel syndrome: a systematic review and meta-analysis of randomized controlled trials[J]. Front Immunol, 2023, 14: 1136343.DOI: 10.3389/fimmu.2023.1136343.
|
[64] |
Huang C, Huang C, Tian R, et al. Washed microbiota transplantation via colonic transendoscopic enteral tube rescues severe acute pancreatitis: a case series[J]. Heliyon, 2024, 10(13): e33678. DOI:10.1016/j.heliyon.2024.e33678.
|
[65] |
Porcari S, Severino A, Rondinella D, et al. Fecal microbiota transplantation for recurrent Clostridioides difficile infection in patients with concurrent ulcerative colitis[J]. J Autoimmun, 2023,141: 103033. DOI:10.1016/j.jaut.2023.103033.
|
[66] |
Liu LW, Xie Y, Li GQ, et al. Gut microbiota-derived nicotinamide mononucleotide alleviates acute pancreatitis by activating pancreatic SIRT3 signalling[J]. Br J Pharmacol, 2023, 180(5): 647-666. DOI:10.1111/bph.15980.
|
[67] |
Marcella C, Cui B, Kelly CR, et al. Systematic review: the global incidence of faecal microbiota transplantation-related adverse events from 2000 to 2020[J]. Aliment Pharmacol Ther, 2021, 53(1): 33-42.DOI: 10.1111/apt.16148.
|