切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2025, Vol. 14 ›› Issue (04) : 601 -608. doi: 10.3877/cma.j.issn.2095-3232.2025.04.016

临床研究

孟德尔随机化分析克罗恩病与非酒精性脂肪性肝病之间因果关系
王继才, 张广权, 吴芬芳, 史宪杰()   
  1. 518033 深圳,中山大学附属第八医院肝胆胰外科
  • 收稿日期:2025-01-22 出版日期:2025-08-10
  • 通信作者: 史宪杰
  • 基金资助:
    国家自然科学基金(82172107); 广东省基础与应用研究企业联合基金(2023A1515220186); 深圳市基础研究资助项目(JCYJ20220530144404010,JCYJ20220530144404011,JCYJ20220818103407016)

Mendelian randomization analysis of causality between Crohn’s disease and nonalcoholic fatty liver disease

Jicai Wang, Guangquan Zhang, Fenfang Wu, Xianjie Shi()   

  1. Department of Hepatobiliary and Pancreatic Surgery, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, China
  • Received:2025-01-22 Published:2025-08-10
  • Corresponding author: Xianjie Shi
引用本文:

王继才, 张广权, 吴芬芳, 史宪杰. 孟德尔随机化分析克罗恩病与非酒精性脂肪性肝病之间因果关系[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 601-608.

Jicai Wang, Guangquan Zhang, Fenfang Wu, Xianjie Shi. Mendelian randomization analysis of causality between Crohn’s disease and nonalcoholic fatty liver disease[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2025, 14(04): 601-608.

目的

基于两样本孟德尔随机化(MR)方法探索克罗恩病(CD)与非酒精性脂肪性肝病(NAFLD)之间可能存在的风险因果关系。

方法

从IEU Open GWAS数据库获取CD与NAFLD的数据集。运用逆方差加权法(IVW)、MR-Egger回归、加权中位数法(WME)、简单模式和加权模式5种方法探讨CD与NAFLD的因果关系,并运用Cochran’s Q检验、MR-Egger回归、MR-PRESSO、留一法、漏斗图和森林图法等评价研究结果的稳定性和可靠性。

结果

5种方法得到的因果效应方向一致,IVW法分析显示CD与NAFLD存在因果关系(OR=1.034,95%CI:1.007~1.061,P=0.013)。异质性分析结果显示,IVW检验(Q=29.041,P=0.969)和MR-Egger检验(Q=29.021,P=0.960)未发现明显异质性。MR-PRESSO分析未检测到离群单核苷酸多态性(SNPs),排除了水平多效性(P=0.888)。MR-Egger回归结果(P=0.209)也未发现水平多效性证据。留一法分析表明,无单个SNPs明显影响总体效应。

结论

从遗传学的角度初步揭示CD可能与NAFLD风险的增加有因果关系,CD和NAFLD之间存在正相关关系,CD是增加NAFLD发生的危险因素。

Objective

To explore the potential causal relationship between Crohn’s disease (CD) and nonalcoholic fatty liver disease (NAFLD) based on two-sample Mendelian randomization (MR) method.

Methods

The datasets of CD and NAFLD were obtained from IEU Open GWAS database. The causality between CD and NAFLD was analyzed by using five methods: inverse variance weighted (IVW) method, MR-Egger regression, weighted median estimator (WME), simple mode and weighted mode. The stability and reliability of the research results were evaluated by Cochran’s Q test, MR-Egger regression, MR-PRESSO, Leave-one-out, funnel diagram and forest plot.

Results

The causal effects obtained by these five methods were in the same direction. IVW analysis showed that there was causal relationship between CD and NAFLD (OR=1.034, 95%CI: 1.007-1.061, P=0.013). Heterogeneity analysis revealed no significant heterogeneity between IVW test (Q=29.041, P=0.969) and MR-Egger test (Q=29.021, P=0.960). No outlier single nucleotide polymorphisms (SNPs) were detected by MR-PRESSO analysis, and horizontal pleiotropy was excluded (P=0.888). MR-Egger regression analysis (P=0.209) also detected no evidence of horizontal pleiotropy. Leave-one-out analysis showed that no single SNPs significantly affected the overall effect.

Conclusions

From the perspective of heredity, this study preliminarily reveals that CD may have causal relationship with the increase of NAFLD risk. Positive correlation between CD and NAFLD is a risk factor for increasing the risk of NAFLD.

表1 MR研究中暴露和结局GWAS信息简表
图1 MR研究三个假设示意图注:MR为孟德尔随机化,CD为克罗恩病,NAFLD为非酒精性脂肪性肝病,SNPs为单核苷酸多态性
图2 纳入的46个SNPs的曼哈顿图注:SNPs为单核苷酸多态性
图3 CD与NAFLD因果关系的MR分析散点图注:CD为克罗恩病,NAFLD为非酒精性脂肪性肝病,MR为孟德尔随机化,SNPs为单核苷酸多态性,WME为加权中位数法,simple mode为简单模式,weighted mode为加权模式,IVW为逆方差加权法
表2 CD与NAFLD因果关系的MR分析结果
图4 CD与NAFLD因果关系的MR分析漏斗图注:CD为克罗恩病,NAFLD为非酒精性脂肪性肝病,MR为孟德尔随机化,IVW为逆方差加权法
图5 CD与NAFLD之间风险因果关系的MR分析森林图注:CD为克罗恩病,NAFLD为非酒精性脂肪性肝病,MR为孟德尔随机化
图6 CD与NAFLD关联的MR分析留一法敏感性分析注:CD为克罗恩病,NAFLD为非酒精性脂肪性肝病,MR为孟德尔随机化
[1]
Younossi ZM, Koenig AB, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1): 73-84. DOI: 10.1002/hep.28431.
[2]
Kim WR, Lake JR, Smith JM, et al. OPTN/SRTR 2016 annual data report: liver[J]. Am J Transplant, 2018, 18(Suppl 1): 172-253. DOI: 10.1111/ajt.14559.
[3]
Estes C, Anstee QM, Arias-Loste MT, et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016-2030[J]. J Hepatol, 2018, 69(4): 896-904. DOI: 10.1016/j.jhep.2018.05.036.
[4]
Barberio B, Zamani M, Black CJ, et al. Prevalence of symptoms of anxiety and depression in patients with inflammatory bowel disease: a systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol, 2021, 6(5): 359-370. DOI: 10.1016/S2468-1253(21)00014-5.
[5]
Ng SC, Shi HY, Hamidi N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies[J]. Lancet, 2017, 390(10114): 2769-2778. DOI: 10.1016/S0140-6736(17)32448-0.
[6]
Rogler G, Singh A, Kavanaugh A, et al. Extraintestinal manifestations of inflammatory bowel disease: current concepts, treatment, and implications for disease management[J]. Gastroenterology, 2021, 161(4): 1118-1132. DOI: 10.1053/j.gastro.2021.07.042.
[7]
Bewtra M, Kaiser LM, TenHave T, et al. Crohn’s disease and ulcerative colitis are associated with elevated standardized mortality ratios: a meta-analysis[J]. Inflamm Bowel Dis, 2013, 19(3): 599-613. DOI: 10.1097/MIB.0b013e31827f27ae.
[8]
Birney E. Mendelian randomization[J]. Cold Spring Harb Perspect Med, 2022, 12(4): a041302. DOI: 10.1101/cshperspect.a041302.
[9]
Evans DM, Davey Smith G. Mendelian randomization: new applications in the coming age of hypothesis-free causality[J]. Annu Rev Genomics Hum Genet, 2015, 16: 327-350. DOI: 10.1146/annurev-genom-090314-050016.
[10]
Cui Z, Feng H, He B, et al. Relationship between serum amino acid levels and bone mineral density: a mendelian randomization study[J]. Front Endocrinol, 2021, 12: 763538. DOI: 10.3389/fendo.2021.763538.
[11]
Kamat MA, Blackshaw JA, Young R, et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations[J]. Bioinformatics, 2019, 35(22): 4851-4853. DOI: 10.1093/bioinformatics/btz469.
[12]
Bowden J, Davey Smith G, Haycock PC, et al. Consistent estimation in mendelian randomization with some invalid instruments using a weighted Median estimator[J]. Genet Epidemiol, 2016, 40(4): 304-314. DOI: 10.1002/gepi.21965.
[13]
Luo P, Yuan Q, Wan X, et al. A two-sample Mendelian randomization study of circulating lipids and deep venous thrombosis[J]. Sci Rep, 2023, 13(1): 7432. DOI: 10.1038/s41598-023-34726-3.
[14]
Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method[J]. Eur J Epidemiol, 2017, 32(5): 377-389. DOI: 10.1007/s10654-017-0255-x.
[15]
Bowden J, Del Greco M F, Minelli C, et al. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization[J]. Stat Med, 2017, 36(11): 1783-1802. DOI: 10.1002/sim.7221.
[16]
Hemani G, Zheng J, Elsworth B, et al. The MR-Base platform supports systematic causal inference across the human phenome[J]. eLife, 2018, 7: e34408. DOI: 10.7554/eLife.34408.
[17]
Verbanck M, Chen CY, Neale B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases[J]. Nat Genet, 2018, 50(5): 693-698. DOI: 10.1038/s41588-018-0099-7.
[18]
Yuan S, Chen J, Li X, et al. Lifestyle and metabolic factors for nonalcoholic fatty liver disease: Mendelian randomization study[J]. Eur J Epidemiol, 2022, 37(7): 723-733. DOI: 10.1007/s10654-022-00868-3.
[19]
Chen L, Fan Z, Sun X, et al. Mendelian randomization rules out causation between inflammatory bowel disease and non-alcoholic fatty liver disease[J]. Front Pharmacol, 2022, 13: 891410. DOI: 10.3389/fphar.2022.891410.
[20]
Hoffmann P, Jung V, Behnisch R, et al. Prevalence and risk factors of nonalcoholic fatty liver disease in patients with inflammatory bowel diseases: a cross-sectional and longitudinal analysis[J]. World J Gastroenterol, 2020, 26(46): 7367-7381. DOI: 10.3748/wjg.v26.i46.7367.
[21]
McHenry S, Glover M, Ahmed A, et al. NAFLD is associated with quiescent rather than active Crohn’s disease[J]. Inflamm Bowel Dis, 2024, 30(5): 757-767. DOI: 10.1093/ibd/izad129.
[22]
Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis[J]. Hepatology, 2010, 52(5): 1836-1846. DOI: 10.1002/hep.24001.
[23]
Paredes-Turrubiarte G, González-Chávez A, Pérez-Tamayo R, et al. Severity of non-alcoholic fatty liver disease is associated with high systemic levels of tumor necrosis factor alpha and low serum interleukin 10 in morbidly obese patients[J]. Clin Exp Med, 2016, 16(2): 193-202. DOI: 10.1007/s10238-015-0347-4.
[24]
Seo YY, Cho YK, Bae JC, et al. Tumor necrosis factor-α as a predictor for the development of nonalcoholic fatty liver disease: a 4-year follow-up study[J]. Endocrinol Metab, 2013, 28(1): 41-45. DOI: 10.3803/EnM.2013.28.1.41.
[25]
Zheng C, Wang L, Zou T, et al. Ileitis promotes MASLD progression via bile acid modulation and enhanced TGR5 signaling in ileal CD8+ T cells[J]. J Hepatol, 2024, 80(5): 764-777. DOI: 10.1016/j.jhep.2023.12.024.
[26]
Qin D, Pan P, Lyu B, et al. Lupeol improves bile acid metabolism and metabolic dysfunction-associated steatotic liver disease in mice via FXR signaling pathway and gut-liver axis[J]. Biomed Pharmacother, 2024, 177: 116942. DOI: 10.1016/j.biopha.2024.116942.
[27]
钱映, 冯月梅, 汪艳姣, 等. 肠道菌群与慢性病关系的研究进展[J]. 中国微生态学杂志, 2022, 34(10): 1217-1221. DOI: 10.13381/j.cnki.cjm.202210020.
[28]
Wang X, He Q, Zhou C, et al. Prolonged hypernutrition impairs TREM2-dependent efferocytosis to license chronic liver inflammation and NASH development[J]. Immunity, 2023, 56(1): 58-77.e11. DOI: 10.1016/j.immuni.2022.11.013.
[29]
谭海鹏, 黄浙勇. 巨噬细胞对凋亡细胞的清除及炎症调控作用[J]. 复旦学报(医学版), 2020, 47(6): 911-916. DOI: 10.3969/j.issn.1672-8467.2020.06.018.
[30]
窦晓坛, 李琳, 邹晓平,等. 克罗恩病伴肝脏上皮样肉芽肿一例[J]. 中华消化杂志,2021,41(8):572-573. DOI: 10.3760/cma.j.cn311367-20190903-00396.
[31]
米拉木古丽·哈尔肯, 黄晓玲. 炎症性肠病患者与代谢综合征的相关性分析[J]. 现代消化及介入诊疗, 2024, 29(1): 25-30.DOI:10.3969/j.issn.1672-2159.2024.01.006.
[32]
牛斌, 饶兰英, 娜迪拉·哈孜肯尼, 等. 两样本孟德尔随机化分析阑尾切除与结直肠肛管恶性肿瘤发生风险的关系[J]. 中华普通外科学文献(电子版),2024,18(1):29-33. DOI:10.3877/cma.j.issn.1674-0793.2024.01.005.
[1] 朱晓璐, 孙希希, 柴佳园, 董泽洋, 赵梦瑶, 黄斌. 超声引导下医用无水乙醇硬化治疗卵巢子宫内膜异位囊肿疗效的影响因素分析[J/OL]. 中华医学超声杂志(电子版), 2025, 22(03): 215-223.
[2] 李培真, 刘海亮, 李大伟, 贾昊, 张泽瑾, 刘力维, 申传安. 重度烧伤患者发生早期急性肾损伤危险因素分析及预测模型建立[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(03): 199-205.
[3] 李嘉怡, 武楠. 基于基因表达数据库筛选牙周炎与非酒精性脂肪性肝炎的潜在共同关键基因[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(03): 170-180.
[4] 王思卓, 段晓鑫, 陈隆, 董胜利. 肠道微生物群、血液代谢物和胃癌的因果关系:东亚人群中介孟德尔随机化研究[J/OL]. 中华普通外科学文献(电子版), 2025, 19(03): 163-168.
[5] 朱宗恒, 张志火. 甲状腺乳头状癌对侧中央区淋巴结转移的危险因素分析及预测模型构建[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(03): 337-340.
[6] 钱小梅, 罗洪, 李智慧, 周代君, 李东. 76例乙型肝炎肝硬化并发原发性肝癌的高危因素Logistic分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(03): 251-253.
[7] 华小玲, 高梦昕, 陈媛, 蔡超, 刘永达, 孙红玲. 良性输尿管狭窄修复重建术研究进展及再手术现状[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(03): 377-383.
[8] 张丽丽, 韩志海, 张春阳, 陈韦, 康奕欣, 张燕, 孟激光, 丁毅伟, 丁静, 崔俊昌. 纤维化性结缔组织病相关间质性肺疾病进展的危险因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 434-441.
[9] 杨小钰, 樊雅欣, 苏奔, 毕蓉蓉, 张少言, 李翠, 吴定中, 鹿振辉, 邱磊. 支气管扩张症急性加重的危险因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 457-462.
[10] 尤宁, 秦卫, 徐斌, 彭一莲, 杨小玉. 慢性阻塞性肺疾病并发重症社区获得性肺炎预后风险预测[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 479-482.
[11] 赵阳, 袁筑慧, 周林, 寇建涛, 郎韧, 贺强, 马军. 非酒精性脂肪性肝病肝癌和病毒性肝炎肝癌肝切除围手术期疗效和安全性的对比分析[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(03): 402-407.
[12] 周艳, 周泽阳, 程欣萌, 何月娥, 李祥勇, 吴勇. 结直肠癌患者早期造口并发症预测模型的构建与验证[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(03): 242-250.
[13] 康清源, 张克石, 肖文韬, 谢培森, 东黎光, 袁平, 关振鹏. 在职钢铁工人群体膝关节骨关节炎流行情况及其可能的危险因素调查[J/OL]. 中华临床医师杂志(电子版), 2025, 19(04): 248-255.
[14] 王双兴, 吴永杰, 孟兵, 张宏涛, 魏丹, 张辉, 刁美. 非限制性室间隔缺损婴儿术后延迟恢复危险因素分析[J/OL]. 中华临床医师杂志(电子版), 2025, 19(03): 188-193.
[15] 马丽, 刘文华, 刘丹, 王晓彤, 康微婉, 张毅, 王雪娇. 终末期肾脏病腹膜透析相关性腹膜炎病原菌及危险因素分析[J/OL]. 中华临床医师杂志(电子版), 2025, 19(03): 194-198.
阅读次数
全文


摘要