[1] |
Younossi ZM, Koenig AB, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1): 73-84. DOI: 10.1002/hep.28431.
|
[2] |
Kim WR, Lake JR, Smith JM, et al. OPTN/SRTR 2016 annual data report: liver[J]. Am J Transplant, 2018, 18(Suppl 1): 172-253. DOI: 10.1111/ajt.14559.
|
[3] |
Estes C, Anstee QM, Arias-Loste MT, et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016-2030[J]. J Hepatol, 2018, 69(4): 896-904. DOI: 10.1016/j.jhep.2018.05.036.
|
[4] |
Barberio B, Zamani M, Black CJ, et al. Prevalence of symptoms of anxiety and depression in patients with inflammatory bowel disease: a systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol, 2021, 6(5): 359-370. DOI: 10.1016/S2468-1253(21)00014-5.
|
[5] |
Ng SC, Shi HY, Hamidi N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies[J]. Lancet, 2017, 390(10114): 2769-2778. DOI: 10.1016/S0140-6736(17)32448-0.
|
[6] |
Rogler G, Singh A, Kavanaugh A, et al. Extraintestinal manifestations of inflammatory bowel disease: current concepts, treatment, and implications for disease management[J]. Gastroenterology, 2021, 161(4): 1118-1132. DOI: 10.1053/j.gastro.2021.07.042.
|
[7] |
Bewtra M, Kaiser LM, TenHave T, et al. Crohn’s disease and ulcerative colitis are associated with elevated standardized mortality ratios: a meta-analysis[J]. Inflamm Bowel Dis, 2013, 19(3): 599-613. DOI: 10.1097/MIB.0b013e31827f27ae.
|
[8] |
|
[9] |
Evans DM, Davey Smith G. Mendelian randomization: new applications in the coming age of hypothesis-free causality[J]. Annu Rev Genomics Hum Genet, 2015, 16: 327-350. DOI: 10.1146/annurev-genom-090314-050016.
|
[10] |
Cui Z, Feng H, He B, et al. Relationship between serum amino acid levels and bone mineral density: a mendelian randomization study[J]. Front Endocrinol, 2021, 12: 763538. DOI: 10.3389/fendo.2021.763538.
|
[11] |
Kamat MA, Blackshaw JA, Young R, et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations[J]. Bioinformatics, 2019, 35(22): 4851-4853. DOI: 10.1093/bioinformatics/btz469.
|
[12] |
Bowden J, Davey Smith G, Haycock PC, et al. Consistent estimation in mendelian randomization with some invalid instruments using a weighted Median estimator[J]. Genet Epidemiol, 2016, 40(4): 304-314. DOI: 10.1002/gepi.21965.
|
[13] |
Luo P, Yuan Q, Wan X, et al. A two-sample Mendelian randomization study of circulating lipids and deep venous thrombosis[J]. Sci Rep, 2023, 13(1): 7432. DOI: 10.1038/s41598-023-34726-3.
|
[14] |
Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method[J]. Eur J Epidemiol, 2017, 32(5): 377-389. DOI: 10.1007/s10654-017-0255-x.
|
[15] |
Bowden J, Del Greco M F, Minelli C, et al. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization[J]. Stat Med, 2017, 36(11): 1783-1802. DOI: 10.1002/sim.7221.
|
[16] |
Hemani G, Zheng J, Elsworth B, et al. The MR-Base platform supports systematic causal inference across the human phenome[J]. eLife, 2018, 7: e34408. DOI: 10.7554/eLife.34408.
|
[17] |
Verbanck M, Chen CY, Neale B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases[J]. Nat Genet, 2018, 50(5): 693-698. DOI: 10.1038/s41588-018-0099-7.
|
[18] |
Yuan S, Chen J, Li X, et al. Lifestyle and metabolic factors for nonalcoholic fatty liver disease: Mendelian randomization study[J]. Eur J Epidemiol, 2022, 37(7): 723-733. DOI: 10.1007/s10654-022-00868-3.
|
[19] |
Chen L, Fan Z, Sun X, et al. Mendelian randomization rules out causation between inflammatory bowel disease and non-alcoholic fatty liver disease[J]. Front Pharmacol, 2022, 13: 891410. DOI: 10.3389/fphar.2022.891410.
|
[20] |
Hoffmann P, Jung V, Behnisch R, et al. Prevalence and risk factors of nonalcoholic fatty liver disease in patients with inflammatory bowel diseases: a cross-sectional and longitudinal analysis[J]. World J Gastroenterol, 2020, 26(46): 7367-7381. DOI: 10.3748/wjg.v26.i46.7367.
|
[21] |
McHenry S, Glover M, Ahmed A, et al. NAFLD is associated with quiescent rather than active Crohn’s disease[J]. Inflamm Bowel Dis, 2024, 30(5): 757-767. DOI: 10.1093/ibd/izad129.
|
[22] |
Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis[J]. Hepatology, 2010, 52(5): 1836-1846. DOI: 10.1002/hep.24001.
|
[23] |
Paredes-Turrubiarte G, González-Chávez A, Pérez-Tamayo R, et al. Severity of non-alcoholic fatty liver disease is associated with high systemic levels of tumor necrosis factor alpha and low serum interleukin 10 in morbidly obese patients[J]. Clin Exp Med, 2016, 16(2): 193-202. DOI: 10.1007/s10238-015-0347-4.
|
[24] |
Seo YY, Cho YK, Bae JC, et al. Tumor necrosis factor-α as a predictor for the development of nonalcoholic fatty liver disease: a 4-year follow-up study[J]. Endocrinol Metab, 2013, 28(1): 41-45. DOI: 10.3803/EnM.2013.28.1.41.
|
[25] |
Zheng C, Wang L, Zou T, et al. Ileitis promotes MASLD progression via bile acid modulation and enhanced TGR5 signaling in ileal CD8 + T cells[J]. J Hepatol, 2024, 80(5): 764-777. DOI: 10.1016/j.jhep.2023.12.024.
|
[26] |
Qin D, Pan P, Lyu B, et al. Lupeol improves bile acid metabolism and metabolic dysfunction-associated steatotic liver disease in mice via FXR signaling pathway and gut-liver axis[J]. Biomed Pharmacother, 2024, 177: 116942. DOI: 10.1016/j.biopha.2024.116942.
|
[27] |
|
[28] |
Wang X, He Q, Zhou C, et al. Prolonged hypernutrition impairs TREM2-dependent efferocytosis to license chronic liver inflammation and NASH development[J]. Immunity, 2023, 56(1): 58-77.e11. DOI: 10.1016/j.immuni.2022.11.013.
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|