切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2025, Vol. 14 ›› Issue (06) : 860 -867. doi: 10.3877/cma.j.issn.2095-3232.2025.06.008

临床研究

基于影像组学和临床特征构建肝癌新辅助/转化治疗后病理学完全缓解预测模型
黄少坚, 梁汉标, 李清平, 唐善华, 李青妍, 李芷西, 黄灿, 王小振, 陈灿辉, 王恺, 李川江()   
  1. 510515 广州,南方医科大学南方医院普通外科学肝胆胰外科
  • 收稿日期:2025-06-06 出版日期:2025-12-10
  • 通信作者: 李川江
  • 基金资助:
    广东省自然科学基金(2021A1515012146)

Construction of prediction model for pathologic complete response of hepatocellular carcinoma after neoadjuvant/conversion therapy based on imageology and clinical features

Shaojian Huang, Hanbiao Liang, Qingping Li, Shanhua Tang, Qingyan Li, Zhixi Li, Can Huang, Xiaozhen Wang, Canhui Chen, Kai Wang, Chuanjiang Li()   

  1. Department of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, Nanfang Hospital of Southern Medical University, Guangzhou 510515, China
  • Received:2025-06-06 Published:2025-12-10
  • Corresponding author: Chuanjiang Li
引用本文:

黄少坚, 梁汉标, 李清平, 唐善华, 李青妍, 李芷西, 黄灿, 王小振, 陈灿辉, 王恺, 李川江. 基于影像组学和临床特征构建肝癌新辅助/转化治疗后病理学完全缓解预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 860-867.

Shaojian Huang, Hanbiao Liang, Qingping Li, Shanhua Tang, Qingyan Li, Zhixi Li, Can Huang, Xiaozhen Wang, Canhui Chen, Kai Wang, Chuanjiang Li. Construction of prediction model for pathologic complete response of hepatocellular carcinoma after neoadjuvant/conversion therapy based on imageology and clinical features[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2025, 14(06): 860-867.

目的

基于CT影像组学和临床特征构建肝癌新辅助/转化治疗后序贯手术切除病理学完全缓解(pCR)预测模型,并探讨其预测价值。

方法

回顾性分析2019年12月至2022年12月南方医科大学南方医院收治的74例新辅助/转化治疗后序贯手术切除的肝癌患者临床资料。患者均签署知情同意书,符合医学伦理学规定。其中男65例,女9例;年龄 22~74岁,中位年龄52岁。依据术后肿瘤标本(80枚)按随机数表法分训练集(40枚)与验证集(40枚)两组。基于患者CT影像组学提取、筛选特征指标并得出影像组学评分(Rad-score)。基于训练集临床因素Logistic多因素分析和CT影像组学构建pCR列线图预测模型。采用C-index和Hosmer-Lemeshow拟合优度检验评价列线图预测模型的一致性。采用Bootstrap法进行内部验证评估校准曲线准确度。采用绘制ROC曲线下面积(AUC)评价列线图预测模型的区分度。绘制临床决策曲线分析(DCA)评价预测模型的临床效用。绘制临床影响曲线(CIC)评价预测模型临床有效率。Delong检验预测模型间的诊断效能。绘制Rad-score可视化图形展示影像组学模型的诊断性能。

结果

Logistic多因素分析显示,治疗后AFP阳性是pCR独立影响因素(OR=5.250,95%CI:1.069~25.789;P<0.05)。经Radiomics提取共4 148个影像特征,采用Lasso分析和十折交叉验证筛选出11个影像特征。AFP与Rad-score联合构建pCR列线图预测模型(联合模型)。联合模型的校准曲线在预测的pCR概率与实际发生概率有较好的一致性,训练集和验证集的C-index分别为0.887、0.895,Hosmer-Lemeshow拟合优度较好(χ2=5.96,4.78;P>0.05)。训练集和验证集Bootstrap法内部验证显示,联合模型校准曲线的平均绝对误差分别为0.063、0.040,曲线准确度良好。DCA和CIC分析显示联合模型具有较高的临床效用和较好的临床有效率。训练集和验证集中,联合模型预测的AUC分别为0.887、0.895。训练集中临床模型、影像组学模型的AUC分别为0.887、0.667、0.857,联合模型诊断效能明显优于临床模型(Z=2.797,P=0.005 2);验证集联合模型诊断效能亦明显优于临床模型(Z=2.027,P=0.042 7)。影像组学Rad-score瀑布图示预测错误的比例不高,可视化良好。

结论

基于CT影像组学和AFP构建的肝癌新辅助/转化治疗后序贯手术切除pCR的联合模型预测能力良好,诊断效能最佳。

Objective

To construct a prediction model for pathologic complete response (pCR) in liver cancer patients after neoadjuvant/conversion therapy followed by sequential surgical resection based on CT radiomics and clinical features, and to evaluate its predictive value.

Methods

Clinical data of 74 liver cancer patients undergoing neoadjuvant/conversion therapy, followed by sequential surgical resection in Nanfang Hospital of Southern Medical University from December 2019 to December 2022 were retrospectively analyzed. The informed consents of all patients were obtained and the local ethical committee approval was received. Among them, 65 patients were male and 9 female, aged from 22 to 74 years, with a median age of 52 years. According to postoperative tumor specimens (n=80), they were randomly divided into the training (n=40) and validation sets (n=40). Feature indexes were extracted and screened based on CT radiomics of the patients, and the radiomics score (Rad-score) was obtained. A nomogram prediction model for pCR was constructed based on multivariate Logistic analysis of clinical factors and CT radiomics in the training set. The consistency of nomogram prediction model was evaluated by C-index and Hosmer-Lemeshow goodness-of-fit test. Bootstrap method was used for internal verification to evaluate the accuracy of calibration curve. The area under the ROC curve (AUC) was utilized to evaluate the degree of discrimination of nomogram prediction model. Decision curve analysis (DCA) was drawn to evaluate clinical utility of the prediction model. Clinical impact curve (CIC) was delineated to evaluate clinical effectiveness of the prediction model. The diagnostic efficiency of the prediction model was assessed by Delong test. The visual graph of Rad-score was drawn to display the diagnostic performance of the radiomics model.

Results

Multivariate Logistic analysis showed that positive AFP after treatment was an independent influencing factor of pCR (OR=5.250, 95%CI: 1.069-25.789; P<0.05). A total of 4 148 radiomic features were extracted by Radiomics, and 11 radiomic features were screened by Lasso analysis and 10-fold cross-validation. AFP combined with Rad-score were used to construct a nomogram prediction model for pCR (combined model). The calibration curve of the combined model yielded high consistency between the predicted and actual pCR probability. The C-index in the training and validation sets was 0.887 and 0.895. Hosmer-Lemeshow test showed a high goodness of fit (χ2=5.96, 4.78; both P>0.05). Internal verification using Bootstrap method in the training and validation sets demonstrated that the average absolute error of the calibration curve of the combined model was 0.063 and 0.040, with high accuracy. DCA and CIC analyses showed that the combined model possessed high clinical utility and clinical effectiveness rate. In the training and validation sets, the AUC of the combined model was 0.887 and 0.895. The AUC of clinical and radiomics models in the training set was 0.887, 0.667 and 0.857, respectively. The diagnostic efficiency of combined model was significantly better than that of clinical model (Z=2.797, P=0.005 2). The diagnostic efficiency of combined model in the validation set was also significantly better than that of clinical model (Z=2.027, P=0.042 7). Rad-score waterfall plot revealed the proportion of incorrect prediction was not high, and the visualization effect was good.

Conclusions

The combined model based on CT radiomics and AFP possesses high prediction value for pCR after neoadjuvant/conversion therapy followed by sequential surgical resection for liver cancer and yields the optimal diagnostic efficiency.

图1 肝癌患者腹部增强CT扫描图像及ROI勾画示意图 注:图中绿色区域代表肿瘤病灶,从左往右依次代表CT平扫期、动脉期、静脉期、延迟期及3D立体肿瘤病灶示意图;ROI为感兴趣区域
图2 基于CT影像组学的肝癌影像特征Lasso回归变量筛选 注:Lasso为最小绝对收缩和选择算子法
表1 训练集肝癌pCR影响因素的单因素分析
图3 基于AFP及影像组学评分构建肝癌pCR联合模型 注:pCR为病理学完全缓解
图4 验证集临床-影像组学列线图肝癌pCR联合模型的DCA曲线 注:pCR为病理学完全缓解,DCA为决策曲线分析
图5 验证集临床-影像组学列线图肝癌pCR联合模型的CIC曲线 注:pCR为病理学完全缓解,CIC为临床影响曲线
图6 验证集影像组学评分可视化瀑布图
[1]
中国医疗保健国际交流促进会肝脏肿瘤学分会, 中国抗癌协会肝癌专业委员会, 中国医师协会肝癌专业委员会, 等. 肝细胞癌新辅助及转化治疗中国专家共识(2023版)[J/CD]. 肝癌电子杂志, 2022, 9(1): 23-28.
[2]
中国抗癌协会肝癌专业委员会转化治疗协作组. 肝癌转化治疗中国专家共识(2021版)[J]. 中国实用外科杂志, 2021, 41(6): 618-632. DOI: 10.19538/j.cjps.issn1005-2208.2021.06.02.
[3]
朱小东, 周俭. 原发性肝癌新辅助治疗的共识与争议[J]. 中国实用外科杂志, 2023, 43(3): 286-290, 309. DOI: 10.19538/j.cjps.issn1005-2208.2023.03.08.
[4]
Yip SS, Aerts HJ. Applications and limitations of radiomics[J]. Phys Med Biol, 2016, 61(13): R150-R166. DOI: 10.1088/0031-9155/61/13/R150.
[5]
Liu H, Jiao Z, Han W, et al. Identifying the histologic subtypes of non-small cell lung cancer with computed tomography imaging: a comparative study of capsule net, convolutional neural network, and radiomics[J]. Quant Imaging Med Surg, 2021, 11(6): 2756-2765. DOI: 10.21037/qims-20-734.
[6]
Wang L, Yang W, Xie X, et al. Application of digital mammography-based radiomics in the differentiation of benign and malignant round-like breast tumors and the prediction of molecular subtypes[J]. Gland Surg, 2020, 9(6): 2005-2016. DOI: 10.21037/gs-20-473.
[7]
Akai H, Yasaka K, Kunimatsu A, et al. Predicting prognosis of resected hepatocellular carcinoma by radiomics analysis with random survival forest[J]. Diagn Interv Imag, 2018, 99(10): 643-651. DOI: 10.1016/j.diii.2018.05.008.
[8]
Zhu Y, Mao Y, Chen J, et al. Radiomics-based model for predicting early recurrence of intrahepatic mass-forming cholangiocarcinoma after curative tumor resection[J]. Sci Rep, 2021, 11(1): 18347. DOI: 10.1038/s41598-021-97796-1.
[9]
杨志浩, 韩懿静, 程铭, 等. 基于CT检查影像组学胃神经内分泌肿瘤预后的预测模型构建及其应用价值[J]. 中华消化外科杂志, 2023, 22(04): 552-565. DOI: 10.3760/cma.j.cn115610-20230323-00126.
[10]
He MK, Liang RB, Zhao Y, et al. Lenvatinib, toripalimab, plus hepatic arterial infusion chemotherapy versus lenvatinib alone for advanced hepatocellular carcinoma[J]. Ther Adv Med Oncol, 2021, 13: 17588359211002720. DOI: 10.1177/17588359211002720.
[11]
Zhang W, Hu B, Han J, et al. Surgery after conversion therapy with PD-1 inhibitors plus tyrosine kinase inhibitors are effective and safe for advanced hepatocellular carcinoma: a pilot study of ten patients[J]. Front Oncol, 2021, 11: 747950. DOI: 10.3389/fonc.2021.747950.
[12]
Allard MA, Sebagh M, Ruiz A, et al. Does pathological response after transarterial chemoembolization for hepatocellular carcinoma in cirrhotic patients with cirrhosis predict outcome after liver resection or transplantation?[J]. J Hepatol, 2015, 63(1): 83-92. DOI: 10.1016/j.jhep.2015.01.023.
[13]
Habibollahi P, Shamchi SP, Choi JM, et al. Association of complete radiologic and pathologic response following locoregional therapy before liver transplantation with long-term outcomes of hepatocellular carcinoma: a retrospective study[J]. J Vasc Interv Radiol, 2019, 30(3): 323-329. DOI: 10.1016/j.jvir.2018.11.037.
[14]
Song P, Tobe RG, Inagaki Y, et al. The management of hepatocellular carcinoma around the world: a comparison of guidelines from 2001 to 2011[J]. Liver Int, 2012, 32(7): 1053-1063. DOI: 10.1111/j.1478-3231.2012.02792.x.
[15]
Han JH, Kim DG, Na GH, et al. Evaluation of prognostic factors on recurrence after curative resections for hepatocellular carcinoma[J]. World J Gastroenterol, 2014, 20(45): 17132-17140. DOI: 10.3748/wjg.v20.i45.17132.
[16]
Choi J, Kim GA, Han S, et al. Longitudinal assessment of three serum biomarkers to detect very early-stage hepatocellular carcinoma[J]. Hepatology, 2019, 69(5): 1983-1994. DOI: 10.1002/hep.30233.
[17]
Hughes DM, Berhane S, Emily de Groot CA, et al. Serum levels of α-fetoprotein increased more than 10 years before detection of hepatocellular carcinoma[J]. Clin Gastroenterol Hepatol, 2021, 19(1): 162-170. e4. DOI: 10.1016/j.cgh.2020.04.084.
[18]
Citores MJ, Lucena JL, de la Fuente S, et al. Serum biomarkers and risk of hepatocellular carcinoma recurrence after liver transplantation[J]. World J Hepatol, 2019, 11(1): 50-64. DOI: 10.4254/wjh.v11.i1.50.
[19]
Zhu XD, Huang C, Shen YH, et al. Downstaging and resection of initially unresectable hepatocellular carcinoma with tyrosine kinase inhibitor and anti-PD-1 antibody combinations[J]. Liver Cancer, 2021, 10(4): 320-329. DOI: 10.1159/000514313.
[20]
He M, Li Q, Zou R, et al. Sorafenib plus hepatic arterial infusion of oxaliplatin, fluorouracil, and leucovorin vs sorafenib alone for hepatocellular carcinoma with portal vein invasion: a randomized clinical trial[J]. JAMA Oncol, 2019, 5(7): 953-960. DOI: 10.1001/jamaoncol.2019.0250.
[21]
中国医疗保健国际交流促进会肝脏肿瘤学分会, 中国医学科学院北京协和医学院肿瘤医院消化道肿瘤多学科协作组, 中国医师协会肝癌专业委员会. 肝癌转化治疗中肝功能全程管理中国专家共识(2022版)[J/CD]. 肝癌电子杂志, 2023, 10(1): 1-9.
[22]
Wu J, Liu A, Cui J, et al. Radiomics-based classification of hepatocellular carcinoma and hepatic haemangioma on precontrast magnetic resonance images[J]. BMC Med Imaging, 2019, 19(1): 23. DOI: 10.1186/s12880-019-0321-9.
[23]
Xia TY, Zhou ZH, Meng XP, et al. Predicting microvascular invasion in hepatocellular carcinoma using CT-based radiomics model[J]. Radiology, 2023, 307(4): e222729. DOI: 10.1148/radiol.222729.
[24]
Guo Z, Zhong N, Xu X, et al. Prediction of hepatocellular carcinoma response to transcatheter arterial chemoembolization: a real-world study based on non-contrast computed tomography radiomics and general image features[J]. J Hepatocell Carcinoma, 2021, 8: 773-782. DOI: 10.2147/JHC.S316117.
[25]
Kim J, Choi SJ, Lee SH, et al. Predicting survival using pretreatment CT for patients with hepatocellular carcinoma treated with transarterial chemoembolization: comparison of models using radiomics[J]. AJR Am J Roentgenol, 2018, 211(5): 1026-1034. DOI: 10.2214/AJR.18.19507.
[26]
Hu Y, Xie C, Yang H, et al. Computed tomography-based deep-learning prediction of neoadjuvant chemoradiotherapy treatment response in esophageal squamous cell carcinoma[J]. Radiother Oncol, 2021, 154: 6-13. DOI: 10.1016/j.radonc.2020.09.014.
[27]
Feng L, Liu Z, Li C, et al. Development and validation of a radiopathomics model to predict pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a multicentre observational study[J]. Lancet Digit Health, 2022, 4(1): e8-e17. DOI: 10.1016/S2589-7500(21)00215-6.
[1] 孙圣梅, 习一清, 安宁. 人表皮生长因子受体2阳性型乳腺癌新辅助治疗响应的基因预测模型[J/OL]. 中华普通外科学文献(电子版), 2025, 19(05): 332-339.
[2] 梁于勇, 郑丽, 杨俭. PDCD4与原发性肝细胞癌患者肝切除术后疾病进展的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 666-669.
[3] 汤震平, 曾鹏飞, 柏斗胜. 绕肝悬吊前入路与传统入路右半肝切除术治疗原发性肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 670-673.
[4] 李婷婷, 李宏羽, 吴孟航. 肝动脉灌注化疗在不可切除肝细胞癌中的应用进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 705-708.
[5] 高加勒, 张忠涛. 结直肠癌外科领域最新进展与热点[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(06): 595-599.
[6] 吴少锋, 王茂, 马海龙, 史英, 代引海. 新辅助治疗后肿瘤退缩分级对局部进展期直肠癌患者全直肠系膜切除术效果的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 535-538.
[7] 田超, 黄若曦, 蒋茂林, 谢崇伟, 刁鹏飞, 钟苏权, 陈东, 王航涛, 陈桂柳, 陈虞娟, 李国良. 不同亚型前列腺癌新辅助化疗后盆腔淋巴结转移的风险因素及时间分布[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 727-735.
[8] 吴哲境, 李敬东. ICG荧光成像引导下腹腔镜肝切除术治疗肝癌的安全性和有效性Meta分析[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 852-859.
[9] 袁洳靖, 孙居仙, 程树群. 肝癌合并门静脉癌栓放射治疗[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 659-666.
[10] 张燕, 许丁伟, 胡满琴, 黄昊扬, 宋光娜, 黄洁. 术前免疫炎症指标对肝癌肝切除术患者生存预后的预测价值[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 707-715.
[11] 方兴保, 庞国莲, 李月宏, 蔡艳. 基于多组学分析MCAM在肝癌中表达及其与生存预后和免疫细胞浸润的关系[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 716-724.
[12] 唐善华, 赖展鸿, 刘海晴, 王小振, 王恺, 周杰. 基于XGBoost算法构建肝癌肝切除术后肝衰竭早期识别预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 725-731.
[13] 赵俊宇, 林航宇, 李会灵, 王显飞, 游川. 肝癌肝切除术后大量腹水预测模型的建立与验证[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 740-747.
[14] 张娴, 王彬瞻, 王馨媛, 罗再, 王庆国, 程云章, 黄陈. 基于增强CT的二维、三维影像组学和联合模型对术前预测结直肠癌脉管侵犯价值研究[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(05): 457-467.
[15] 李曰平, 鞠倩, 张汝梦, 韩博. 基于CT影像组学预测胃癌根治术复发风险的临床研究[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(05): 460-466.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?