切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2025, Vol. 14 ›› Issue (05) : 740 -747. doi: 10.3877/cma.j.issn.2095-3232.2025.05.012

临床研究

肝癌肝切除术后大量腹水预测模型的建立与验证
赵俊宇1, 林航宇1, 李会灵1, 王显飞1, 游川,2()   
  1. 1 637000 四川省 南充市,川北医学院附属医院消化内科
    2 637000 四川省 南充市,川北医学院附属医院肝胆外科
  • 收稿日期:2025-03-25 出版日期:2025-10-10
  • 通信作者: 游川
  • 基金资助:
    中国医学基金会专项课题基金项目(2022HX011)

Construction and validation of prediction model for massive ascites after liver resection for primary liver cancer

Junyu Zhao1, Hangyu Lin1, Huiling Li1, Xianfei Wang1, Chuan You,2()   

  1. 1 Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
    2 Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
  • Received:2025-03-25 Published:2025-10-10
  • Corresponding author: Chuan You
引用本文:

赵俊宇, 林航宇, 李会灵, 王显飞, 游川. 肝癌肝切除术后大量腹水预测模型的建立与验证[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 740-747.

Junyu Zhao, Hangyu Lin, Huiling Li, Xianfei Wang, Chuan You. Construction and validation of prediction model for massive ascites after liver resection for primary liver cancer[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2025, 14(05): 740-747.

目的

探讨原发性肝癌(肝癌)肝切除术后大量腹水的危险因素,并建立其预测的列线图模型。

方法

回顾性分析2018年1月至2022年12月川北医学院附属医院收治的739例肝癌患者临床资料。其中男585例,女154例;年龄21~89岁,中位年龄60岁。根据手术时间及手术科室不同,分为训练集和验证集,其中训练集536例,验证集203例。训练集数据用于模型建立、模型评价与内部验证,验证集数据用于外部验证。通过查询医院科研数据大平台及专病数据库获取纳入研究患者所需的临床资料,在训练集中,应用Lasso回归和二元Logistic回归分析构建术后大量腹水的风险预测模型;使用Bootstrap法对训练集进行1 000次重复抽样进行内部验证;使用验证集数据进行外部验证。采用ROC曲线下面积(AUC)和Calibration校准曲线评估预测模型的预测性能;临床决策曲线分析(DCA)评价预测模型的临床应用价值。

结果

训练集行Lasso回归和Logistic回归分析显示,肝硬化、术后ALB、术中出血量和ALP为术后大量腹水的独立危险因素(OR=3.107,2.321,2.472,2.810;P<0.05)。基于4个独立的危险因素构建预测列线图模型。预测模型总分的最佳截断值为185.5分,总分≥185.5的患者为高危组,总分<185.5的患者为低危组。训练集和验证集中预测模型的AUC分别为0.759(95%CI:0.716~0.802)和0.805(95%CI:0.743~0.867)。Calibration校准曲线显示,肝切除术后大量腹水的预测风险与预测模型估计的实际风险之间具有良好的一致性。DCA表明,预测模型在预测患者发生大量腹水的风险方面具有临床价值,可使患者受益。

结论

基于肝硬化、术后ALB、术中出血量和ALP独立危险因素构建的肝癌患者肝切除术后大量腹水的预测模型具有良好的预测能力和临床适用性。

Objective

To investigate the risk factors of massive ascites after liver resection for primary liver cancer (PLC) and construct a nomogram prediction model.

Methods

Clinical data of 739 PLC patients admitted to the Affiliated Hospital of North Sichuan Medical College from January 2018 to December 2022 were retrospectively analyzed. Among them, 585 patients were male and 154 female, aged from 21 to 89 years, with a median age of 60 years. According to the operation time and surgical department, all patients were divided into the training set (n=536) and validation set (n=203). The data in the training set were used for model construction, model evaluation and internal validation, and those in the validation set data were utilized for external validation. Clinical data of the enrolled patients were obtained by querying the scientific research data platform and special disease database of the hospital. In the training set, Lasso regression and binary Logistic regression analyses were used to construct the risk prediction model for postoperative massive ascites. Bootstrap method was adopted to conduct 1 000 repeated sampling in the training set for internal validation, and the data in the validation set were used for external validation. The area under the ROC curve (AUC) and calibration curve were employed to evaluate the prediction performance of this prediction model. Decision curve analysis (DCA) was utilized to evaluate clinical application value of the prediction model.

Results

Lasso regression and Logistic regression analyses showed that liver cirrhosis, postoperative ALB, intraoperative blood loss and ALP were the risk factors for postoperative massive ascites in the training set (OR=3.107, 2.321, 2.472, 2.810; all P<0.05). Based on these four independent risk factors, a nomogram prediction model was constructed. The optimal cut-off value of the total score of the prediction model was 185.5. Patients with a total score of ≥185.5 were assigned into the high-risk group, and those with a total score <185.5 were allocated into the low-risk group. The AUC of the prediction model in the training and validation sets was 0.759 (95%CI: 0.716-0.802) and 0.805 (95%CI: 0.743-0.867), respectively. Calibration curve identified high consistency between the predicted risk and the actual risk estimated by the prediction model for of massive ascites after liver resection. DCA demonstrated that the prediction model had clinical value in predicting the risk of massive ascites, and its application could bring clinical benefits to the patients.

Conclusions

Prediction model for massive ascites after liver resection based on the independent risk factors including liver cirrhosis, postoperative ALB, intraoperative blood loss and ALP, in patients with PLC has high predictive ability and clinical applicability.

表1 训练集和验证集肝癌患者基线临床特征[例(%)]
变量 训练集 验证集
大量腹水 无大量腹水 大量腹水 无大量腹水
男性 128(79.5) 292(77.9) 55(77.5) 110(83.3)
年龄≥60岁 65(40.4) 175(46.7) 32(45.1) 67(50.8)
饮酒史 71(44.1) 131(34.9) 30(42.3) 47(35.6)
糖尿病史 20(12.4) 45(12) 13(18.3) 22(16.7)
肝细胞癌a 123(76.4) 271(72.3) 61(85.9) 104(78.8)
HBV 110(68.3) 237(63.2) 58(81.7) 91(68.9)
HCV 2(1.2) 5(1.3) 0 0
肝硬化 127(78.9) 227(60.5) 60(84.5) 85(64.4)
肿瘤直径≥5 cm 65(40.4) 131(34.9) 37(52.1) 47(35.6)
Plt<100×109/L 40(24.8) 67(17.9) 25(35.2) 24(18.2)
PT>15 s 24(14.9) 30(8) 7(9.9) 9(6.8)
术前ALB 37(23.0) 45(12.0) 11(15.5) 13(9.8)
术前TB>17.1 μmol/L 68(42.2) 160(42.7) 37(52.1) 56(42.4)
术后TB>17.1 μmol/L 134(83.2) 274(73.1) 60(84.5) 97(73.5)
术后ALB 111(68.9) 184(49.1) 57(80.3) 83(62.9)
术后ALP>130 U/L 66(41.0) 94(25.1) 17(23.9) 34(25.8)
术后ALT>40 U/L 36(22.4) 95(25.3) 17(23.9) 30(22.7)
术后PA<180 mg/L 81(50.3) 147(39.2) 20(28.2) 45(34.1)
术后PTA<70% 30(18.6) 44(11.7) 5(7.0) 17(12.9)
ALBI分级≥2级 80(49.7) 140(37.3) 37(52.1) 50(37.9)
Child-Pugh A级以上 19(11.8) 28(7.5) 13(18.3) 9(6.8)
ASA-PS≥3级 61(37.9) 112(29.9) 21(29.6) 41(31.1)
单叶切除 57(35.4) 170(45.3) 41(57.7) 77(58.3)
双叶切除 83(51.6) 174(46.4) 28(39.4) 46(34.8)
三叶/以上切除 21(13.0) 31(8.3) 2(2.9) 9(6.8)
包含S7段肝切除 27(16.8) 48(12.8) 1(1.4) 4(3.0)
包含S8段肝切除 18(11.2) 41(10.9) 3(4.2) 6(4.5)
右肝切除 119(73.9) 230(61.3) 42(59.2) 56(42.4)
腹腔镜手术 96(59.6) 278(74.1) 34(47.9) 76(57.6)
膈肌切开 12(7.5) 20(5.3) 4(5.6) 2(1.5)
肝门阻断时间≥15 min 55(34.2) 102(27.2) 17(23.9) 20(15.2)
术中出血量≥500 ml 90(55.9) 129(34.4) 48(67.6) 47(35.6)
图1 基于训练集的肝癌肝切除患者术后大量腹水危险因素分析 注:a为Lasso回归10折交叉验证图,b为 Lasso回归系数路径图,c为Logistic回归分析森林图
图2 肝癌切除术后大量腹水预测列线图
图3 肝癌切除术后大量腹水预测模型ROC曲线 注:a为训练集,b为验证集
图4 肝癌切除术后大量腹水预测模型Calibration校准曲线 注:a为训练集,b为验证集
图5 肝癌切除术后大量腹水预测模型在训练集和验证集中的临床决策曲线分析
[1]
雷莎, 文国容, 金海, 等. 慢性乙型肝炎进展为肝细胞癌危险因素的Meta分析[J]. 海南医学, 2021, 32(10): 1332-1337. DOI: 10.3969/j.issn.1003-6350.2021.10.030.
[2]
Yang A, Zhang P, Sun Z, et al. Lysionotin induces apoptosis of hepatocellular carcinoma cells via caspase-3 mediated mitochondrial pathway[J]. Chem Biol Interact, 2021, 344: 109500. DOI: 10.1016/j.cbi.2021.109500.
[3]
中华人民共和国国家卫生健康委员会医政司. 原发性肝癌诊疗指南(2024年版)[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(4): 407-449. DOI: 10.3877/cma.j.issn.2095-3232.2024.04.001.
[4]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[5]
Chen H, Jia W. Progress in hepatectomy for hepatocellular carcinoma and peri-operation management[J]. Genes Dis, 2020, 7(3): 320-327. DOI: 10.1016/j.gendis.2020.02.001.
[6]
Fuks D, Cauchy F, Ftériche S, et al. Laparoscopy decreases pulmonary complications in patients undergoing major liver resection: a propensity score analysis[J]. Ann Surg, 2016, 263(2): 353-361. DOI: 10.1097/SLA.0000000000001140.
[7]
Famularo S, Donadon M, Cipriani F, et al. The impact of postoperative ascites on survival after surgery for hepatocellular carcinoma: a national study[J]. J Gastrointest Surg, 2021, 25(11): 2823-2834. DOI: 10.1007/s11605-021-04952-z.
[8]
吴胜, 唐晓明, 蔡创, 等. 肝细胞癌切除术后发生大量腹水的影响因素分析[J]. 肝脏, 2020, 25(7): 765-767. DOI: 10.14000/j.cnki.issn.1008-1704.2020.07.033.
[9]
Yoshikawa T, Nomi T, Hokuto D, et al. Risk factors for postoperative ascites in patients undergoing liver resection for hepatocellular carcinoma[J]. World J Surg, 2017, 41(8): 2095-2100. DOI: 10.1007/s00268-017-4003-x.
[10]
单文刚, 曹宽, 刘志毅, 等. 原发性肝癌患者行解剖性肝切除术后大量腹水的危险因素分析[J]. 徐州医科大学学报, 2022, 42(8): 571-575.
[11]
Harimoto N, Araki K, Ishii N, et al. Predictors of postoperative ascites after hepatic resection in patients with hepatocellular carcinoma[J]. Anticancer Res, 2020, 40(8): 4343-4349. DOI: 10.21873/anticanres.14437.
[12]
Itoh S, Uchiyama H, Ikeda Y, et al. Post-hepatectomy refractory ascites in cirrhotic patients with hepatocellular carcinoma: risk factor analysis to overcome this problematic complication[J]. Anticancer Res, 2017, 37(3): 1381-1385. DOI: 10.21873/anticanres.11459.
[13]
Qian HG, Wu LY, Li CP, et al. A novel scoring system to predict ascites development post hepatectomy for BCLC stage B hepatocellular carcinoma[J]. Translational Cancer Research, 2018, 7(1): 180-188. DOI: 10.21037/tcr.2018.01.35.
[14]
吕少诚, 潘冰, 贺强. 肝移植术后围手术期顽固性腹水的诊治进展[J]. 国际外科学杂志, 2018, 45(10): 703-707. DOI: 10.3760/cma.j.issn.1673-4203.2018.10.015.
[15]
Li C, Zhang JY, Zhang XY, et al. FibroScan predicts ascites after liver resection for hepatitis B virus-related hepatocellular carcinoma: a prospective cohort study[J]. Int J Surg, 2015, 20: 21-25. DOI: 10.1016/j.ijsu.2015.05.047.
[16]
Xu HW, Liu F, Li HY, et al. Outcomes following laparoscopic versus open major hepatectomy for hepatocellular carcinoma in patients with cirrhosis: a propensity score-matched analysis[J]. Surg Endosc, 2018, 32(2): 712-719. DOI: 10.1007/s00464-017-5727-2.
[17]
Chiejina M, Kudaravalli P, Samant H. Ascites[M]. Treasure Island (FL): StatPearls Publishing, 2022.
[18]
程文瑾. 肝硬化门静脉高压及其并发症治疗新进展[J]. 临床医学进展, 2022, 12(3): 2192-2200. DOI: 10.12677/ACM.2022.123316.
[19]
Moore CM, Van Thiel DH. Cirrhotic ascites review: pathophysiology, diagnosis and management[J]. World J Hepatol, 2013, 5(5): 251-263. DOI: 10.4254/wjh.v5.i5.251.
[20]
陈东风, 文良志. 腹水与肝脏疾病[J]. 中华消化杂志, 2021, 41(5): 303-306. DOI: 10.3760/cma.j.cn311367-20210125-00060.
[21]
李丹, 胡萌, 张冬, 等. 乙型肝炎肝硬化腹水合并自发性细菌性腹膜炎患者肠道菌群特征[J]. 中国微生态学杂志, 2023, 35(11): 1303-1310. DOI: 10.13381/j.cnki.cjm.202311010.
[22]
郭晓霞, 胡娜, 廉晓晓, 等. 肝硬化患者肠道菌群失调的特征及驱动因子分析[J]. 临床肝胆病杂志, 2020, 36(7): 1527-1533. DOI: 10.3969/j.issn.1001-5256.2020.07.016.
[23]
European Association for the Study of the Liver. EASL clinical practice guidelines for the management of patients with decompensated cirrhosis[J]. J Hepatol, 2018, 69(2): 406-460. DOI: 10.1016/j.jhep.2018.03.024.
[24]
Saner FH, Stueben BO, Hoyer D, et al. Use or misuse of albumin in critical ill patients[J]. Diseases, 2023, 11(2): 68. DOI: 10.3390/diseases11020068.
[25]
王银玲, 刘昱含, 朱传武. 有效白蛋白浓度在慢性肝病治疗中应用的认识[J]. 世界华人消化杂志, 2023, 31(6): 214-220. DOI: 10.11569/wcjd.v31.i6.214.
[26]
海峡两岸医药卫生交流协会肿瘤防治专家委员会. 肝癌肝切除围手术期管理中国专家共识(2021年版)[J]. 中华肿瘤杂志, 2021, 43(4): 414-430. DOI: 10.3760/cma.j.cn112152-20210314-00228.
[27]
彭阿平, 朱萱. 肝肾综合征的发病机制及诊治的研究进展[J]. 世界华人消化杂志, 2015, 23(9): 1440-1446. DOI: 10.11569/wcjd.v23.i9.1440.
[28]
Zhao H, Wu L, Yan G, et al. Inflammation and tumor progression: signaling pathways and targeted intervention[J]. Signal Transduct Target Ther, 2021, 6(1): 263. DOI: 10.1038/s41392-021-00658-5.
[29]
尉继伟, 王宏业. 恶性腹水源性腹腔间隔室综合征研究新进展[J]. 中华转移性肿瘤杂志, 2019, 2(4): 5-11. DOI: 10.3760/cma.j.issn.2096-5400.2019.04.002.
[30]
梅斌, 陈孝平, 刘飞龙. 肝硬化门静脉高压症患者断流术后转归的影响因素分析[J]. 世界华人消化杂志, 2006, 14(24): 2452-2455. DOI: 10.3969/j.issn.1009-3079.2006.24.019.
[31]
陈胜灯, 牟志强, 陈忠垚, 等. 碱性磷酸酶与前白蛋白比值对肝细胞癌根治性切除术后患者预后及并发症的预测价值[J]. 临床肝胆病杂志, 2023, 39(1): 118-127. DOI: 10.3969/j.issn.1001-5256.2023.01.018.
[32]
阎龙, 戴朝六. 重视人血白蛋白在肝脏外科围手术期的合理使用[J/OL]. 中华普通外科学文献(电子版), 2023, 17(1): 9-13. DOI: 10.3877/cma.j.issn.1674-0793.2023.01.002.
[1] 张光亚, 方荣喜, 吴鹏, 肖虎. 腹腔镜下不同入肝血流阻断肝切除治疗原发性肝癌的近中期随访比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 376-379.
[2] 袁洳靖, 孙居仙, 程树群. 肝癌合并门静脉癌栓放射治疗[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 659-666.
[3] 唐玥, 陈家璐, 覃德龙, 李宗龙, 汤朝晖, 全志伟. 腹腔镜肝切除治疗复发性肝癌的焦点与难点问题探讨[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 667-672.
[4] 袁文康, 张冲, 张超. 肝脏外科治疗理念的变迁与技术进步[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 673-679.
[5] 黄洁. 腹腔镜肝后上段切除术中的技术挑战与策略思考[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 680-686.
[6] 林水荣, 宋子敏, 于玺, 李绍强, 华赟鹏, 沈顺利. 术前抗病毒治疗对HBV相关肝癌肝切除术后肝衰竭影响[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 700-706.
[7] 张燕, 许丁伟, 胡满琴, 黄昊扬, 宋光娜, 黄洁. 术前免疫炎症指标对肝癌肝切除术患者生存预后的预测价值[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 707-715.
[8] 方兴保, 庞国莲, 李月宏, 蔡艳. 基于多组学分析MCAM在肝癌中表达及其与生存预后和免疫细胞浸润的关系[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 716-724.
[9] 唐善华, 赖展鸿, 刘海晴, 王小振, 王恺, 周杰. 基于XGBoost算法构建肝癌肝切除术后肝衰竭早期识别预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 725-731.
[10] 丹增阿旺, 王超, 杨振华, 何正为, 张必翔, 张斌豪, 王婷. MDT协作下ERAS临床路径在肝切除围手术期中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 732-739.
[11] 吴金柱, 王锐, 朱国栋, 蔡卫华. 吲哚菁绿荧光导航腹腔镜肝右前叶切除术[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 802-802.
[12] 平文俊, 李江涛, 陈国栋. 机器人肝门部胆管癌根治术[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 804-804.
[13] 杨钰泽, 徐家豪, 杨一石, 王明达, 杨田. 肝细胞癌新辅助治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 515-521.
[14] 罗臻, 韦鹏程, 孙馨, 李照. 肝细胞癌骨转移研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 522-527.
[15] 卫星彤, 李昊昌, 赵欣. 超声造影在鉴别诊断原发性肝癌类型上的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 392-396.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?