[1] |
Razumilava N, Gores GJ. Cholangiocarcinoma[J]. Lancet, 2014, 383(9935):2168-2179.
|
[2] |
Zhou J, Sun HC, Wang Z, et al. Guidelines for diagnosis and treatment of primary liver cancer in China (2017 edition)[J]. Liver cancer, 2018, 7(3):235-260.
|
[3] |
Barkal AA, Brewer RE, Markovic M, et al. CD24 signalling through macrophage siglec-10 is a target for cancer immunotherapy[J]. Nature, 2019, 572(7769):392-396.
|
[4] |
Wu Q, Zhou W, Yin S, et al. Blocking triggering receptor expressed on myeloid cells-1-positive tumor-associated macrophages induced by hypoxia reverses immunosuppression and anti-programmed cell death ligand 1 resistance in liver cancer[J]. Hepatology, 2019, 70(1):198-214.
|
[5] |
Netea-Maier RT, Smit JWA, Netea MG. Metabolic changes in tumor cells and tumor-associated macrophages: a mutual relationship[J]. Cancer Lett, 2018(413):102-109.
|
[6] |
Zhang Q, He Y, Luo N, et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma[J]. Cell, 2019, 179(4): 829-845, e20.
|
[7] |
Rodell CB, Arlauckas SP, Cuccarese MF, et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy[J]. Nat Biomed Eng, 2018, 2(8):578-588.
|
[8] |
Klichinsky M, Ruella M, Shestova O, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy[J]. Nat Biotechnol, 2020, DOI: 10.1038/s41587-020-0462-y[Epub ahead of print].
|
[9] |
Zhou SL, Dai Z, Zhou ZJ, et al. CXCL5 contributes to tumor metastasis and recurrence of intrahepatic cholangiocarcinoma by recruiting infiltrative intratumoral neutrophils[J]. Carcinogenesis, 2014, 35(3):597-605.
|
[10] |
Takeshima T, Pop LM, Laine A, et al. Key role for neutrophils in radiation-induced antitumor immune responses: potentiation with G-CSF[J]. Proc Natl Acad Sci U S A, 2016, 113(40):11300-11305.
|
[11] |
Bronte V, Brandau S, Chen SH, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards[J]. Nat Commun, 2016(7):12150.
|
[12] |
Marvel D, Gabrilovich DI. Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected[J]. J Clin Invest, 2015, 125(9):3356-3364.
|
[13] |
Weber R, Fleming V, Hu X, et al. Myeloid-derived suppressor cells hinder the anti-cancer activity of immune checkpoint inhibitors[J]. Front Immunol, 2018(9):1310.
|
[14] |
Liu LZ, Zhang Z, Zheng BH, et al. CCL15 recruits suppressive monocytes to facilitate immune escape and disease progression in hepatocellular carcinoma[J]. Hepatology, 2019, 69(1):143-159.
|
[15] |
Xu XD, Hu J, Wang M, et al. Circulating myeloid-derived suppressor cells in patients with pancreatic cancer[J]. Hepatobiliary Pancreat Dis Int, 2016, 15(1):99-105.
|
[16] |
Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age[J]. Nat Immunol, 2018, 19(2):108-119.
|
[17] |
Zhou J, Liu M, Sun H, et al. Hepatoma-intrinsic CCRK inhibition diminishes myeloid-derived suppressor cell immunosuppression and enhances immune-checkpoint blockade efficacy[J]. Gut, 2018, 67(5):931-944.
|
[18] |
Satpathy AT, Wu X, Albring JC, et al. Re(de)fining the dendritic cell lineage[J]. Nat Immunol, 2012, 13(12):1145-1154.
|
[19] |
Veglia F, Gabrilovich DI. Dendritic cells in cancer: the role revisited[J]. Curr Opin Immunol, 2017(45):43-51.
|
[20] |
Takagi S, Miyagawa S, Ichikawa E, et al. Dendritic cells, T-cell infiltration, and Grp94 expression in cholangiocellular carcinoma[J]. Hum Pathol, 2004, 35(7):881-886.
|
[21] |
Sprooten J, Ceusters J, Coosemans A, et al. Trial watch: dendritic cell vaccination for cancer immunotherapy[J]. Oncoimmunology, 2019, 8(11):e1638212.
|
[22] |
Noda T, Shimoda M, Ortiz V, et al. Immunization with aspartate-beta-hydroxylase-loaded dendritic cells produces antitumor effects ina rat model of intrahepatic cholangiocarcinoma[J]. Hepatology, 2012, 55(1):86-97.
|
[23] |
Chiossone L, Dumas PY, Vienne M, et al. Natural killer cells and other innate lymphoid cells in cancer[J]. Nat Rev Immunol, 2018, 18(11):671-688.
|
[24] |
Galon J, Bruni D. Tumor immunology and tumor evolution: intertwined histories[J]. Immunity, 2020, 52(1):55-81.
|
[25] |
Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies[J]. Nat Rev Drug Discov, 2019, 18(3):197-218.
|
[26] |
Zheng BH, Ma JQ, Tian LY, et al. The distribution of immune cells within combined hepatocellular carcinoma and cholangiocarcinoma predicts clinical outcome[J]. Clin Transl Med, 2020, 10(1):45-56.
|
[27] |
Ma L, Hernandez MO, Zhao Y, et al. Tumor cell biodiversity drives microenvironmental reprogramming in liver cancer[J]. Cancer Cell, 2019, 36(4):418-430, e6.
|
[28] |
Zhou G, Sprengers D, Mancham S, et al. Reduction of immunosuppressive tumor microenvironment in cholangiocarcinoma by ex vivo targeting immune checkpoint molecules[J]. J Hepatol, 2019, 71(4):753-762.
|
[29] |
Petitprez F, de Reyniès A, Keung EZ, et al. B cells are associated with survival and immunotherapy response in sarcoma[J]. Nature, 2020, 577(7791):556-560.
|
[30] |
Helmink BA, Reddy SM, Gao J, et al. B cells and tertiary lymphoid structures promote immunotherapy response[J]. Nature, 2020, 577(7791):549-555.
|
[31] |
Calderaro J, Petitprez F, Becht E, et al. Intra-tumoral tertiary lymphoid structures are associated with a low risk of early recurrence of hepatocellular carcinoma[J]. J Hepatol, 2019, 70(1):58-65.
|
[32] |
Finkin S, Yuan D, Stein I, et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma[J]. Nat Immunol, 2015, 16(12):1235-1244.
|
[33] |
Job S, Rapoud D, Dos Santos A, et al. Identification of four immune subtypes characterized by distinct composition and functions of tumor microenvironment in intrahepatic cholangiocarcinoma[J]. Hepatology, 2019, DOI: 10.1002/hep.31092[Epub ahead of print].
|
[34] |
Jusakul A, Cutcutache I, Yong CH, et al. Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma[J]. Cancer Discov, 2017, 7(10):1116-1135.
|
[35] |
Nakamura H, Arai Y, Totoki Y, et al. Genomic spectra of biliary tract cancer[J]. Nat Genet, 2015, 47(9):1003-1010.
|
[36] |
Ott PA, Bang YJ, Piha-Paul SA, et al. T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028[J]. J Clin Oncol, 2019, 37(4):318-327.
|