[1] |
Nathan H, Pawlik TM, Wolfgang CL, et al. Trends in survival after surgery for cholangiocarcinoma: a 30-year population-based SEER database analysis[J]. J Gastrointest Surg, 2007, 11(11):1488-1496.
|
[2] |
Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism[J]. Cell Metab, 2016, 23(1):27-47.
|
[3] |
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5):646-674.
|
[4] |
Tesfay L, Paul BT, Konstorum A, et al. Stearoyl-CoA desaturase 1 protects ovarian cancer cells from ferroptotic cell death[J]. Cancer Res, 2019, 79(20): 5355-5366.
|
[5] |
Wang T, Fahrmann JF, Lee H, et al. JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance[J]. Cell Metab, 2018, 27(1):136-150, e5.
|
[6] |
Poulose N, Amoroso F, Steele RE, et al. Genetics of lipid metabolism in prostate cancer[J]. Nat Genet, 2018, 50(2):169-171.
|
[7] |
Li L, Che L, Tharp KM, et al. Differential requirement for de novo lipogenesis in cholangiocarcinoma and hepatocellular carcinoma of mice and humans[J]. Hepatology, 2016, 63(6):1900-1913.
|
[8] |
Sun B, Rong R, Jiang H, et al. Prostaglandin E2 receptor EP1 phosphorylate CREB and mediates MMP2 expression in human cholangiocarcinoma cells[J]. Mol Cell Biochem, 2013, 378(1/2): 195-203.
|
[9] |
Hennequart M, Pilotte L, Cane S, et al. Constitutive IDO1 expression in human tumors is driven by cyclooxygenase-2 and mediates intrinsic immune resistance[J]. Cancer Immunol Res, 2017, 5(8): 695-709.
|
[10] |
Jongthawin J, Techasen A, Loilome W, et al. Anti-inflammatory agents suppress the prostaglandin E2 production and migration ability of cholangiocarcinoma cell lines[J]. Asian Pac J Cancer Prev, 2012, 13 Suppl:47-51.
|
[11] |
Yao L, Han C, Song K, et al. Omega-3 polyunsaturated fatty acids upregulate 15-PGDH expression in cholangiocarcinoma cells by inhibiting miR-26a/b expression[J]. Cancer Res, 2015, 75(7):1388-1398.
|
[12] |
Lin CR, Chu TM, Luo A, et al. Omega-3 polyunsaturated fatty acids suppress metastatic features of human cholangiocarcinoma cells by suppressing twist[J]. J Nutr Biochem, 2019(74):108245.
|
[13] |
Lim K, Han C, Xu L, et al. Cyclooxygenase-2-derived prostaglandin E2 activates beta-catenin in human cholangiocarcinoma cells: evidence for inhibition of these signaling pathways by omega 3 polyunsaturated fatty acids[J]. Cancer Res, 2008, 68(2):553-560.
|
[14] |
Gül-Utku Ö, Karatay E, Ergül B, et al. The role of resolvin D1 in the differential diagnosis of the cholangiocarcinoma and benign biliary diseases[J]. Clin Lab, 2020, DOI: 10.7754/Clin.Lab.2020.200212[Epub ahead of print].
|
[15] |
Mathema VB, Chaijaroenkul W, Karbwang J, et al. Growth inhibitory effect of beta-eudesmol on cholangiocarcinoma cells and its potential suppressive effect on heme oxygenase-1 production, STAT1/3 activation, and NF-κB downregulation[J]. Clin Exp Pharmacol Physiol, 2017, 44(11):1145-1154.
|
[16] |
Yin DL, Liang YJ, Zheng TS, et al. EF24 inhibits tumor growth and metastasis via suppressing NF-kappaB dependent pathways in human cholangiocarcinoma[J]. Sci Rep, 2016(6):32167.
|
[17] |
Liu R, Zhao R, Zhou X, et al. Conjugated bile acids promote cholangiocarcinoma cell invasive growth through activation of sphingosine 1-phosphate receptor 2[J]. Hepatology, 2014, 60(3):908-918.
|
[18] |
Liu R, Li X, Qiang X, et al. Taurocholate induces cyclooxygenase-2 expression via the sphingosine 1-phosphate receptor 2 in a human cholangiocarcinoma cell line[J]. J Biol Chem, 2015, 290(52):30988-31002.
|
[19] |
Erice O, Labiano I, Arbelaiz A, et al. Differential effects of FXR or TGR5 activation in cholangiocarcinoma progression[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(4 Pt B):1335-1344.
|
[20] |
Reich M, Deutschmann K, Sommerfeld A, et al. TGR5 is essential for bile acid-dependent cholangiocyte proliferation in vivo and in vitro[J]. Gut, 2016, 65(3):487-501.
|
[21] |
Nie J, Zhang J, Wang L, et al. Adipocytes promote cholangiocarcinoma metastasis through fatty acid binding protein 4[J]. J Exp Clin Cancer Res, 2017, 36(1):183.
|
[22] |
Hotamisligil GS, Bernlohr DA. Metabolic functions of FABPs--mechanisms and therapeutic implications[J]. Nat Rev Endocrinol, 2015, 11(10):592-605.
|
[23] |
Nieman KM, Kenny HA, Penicka CV, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth[J]. Nat Med, 2011, 17(11):1498-1503.
|
[24] |
Nakagawa R, Hiep NC, Ouchi H, et al. Expression of fatty-acid-binding protein 5 in intrahepatic and extrahepatic cholangiocarcinoma: the possibility of different energy metabolisms in anatomical location[J]. Med Mol Morphol, 2020, 53(1):42-49.
|
[25] |
Jeong CY, Hah YS, Cho BI, et al. Fatty acid-binding protein 5 promotes cell proliferation and invasion in human intrahepatic cholangiocarcinoma[J]. Oncol Rep, 2012, 28(4):1283-1292.
|
[26] |
Houthuijzen JM. For better or worse: FFAR1 and FFAR4 signaling in cancer and diabetes[J]. Mol Pharmacol, 2016, 90(6):738-743.
|
[27] |
Serna-Marquez N, Diaz-Aragon R, Reyes-Uribe E, et al. Linoleic acid induces migration and invasion through FFAR4- and PI3K-/Akt-dependent pathway in MDA-MB-231 breast cancer cells[J]. Med Oncol, 2017, 34(6):111.
|
[28] |
Fukushima K, Yamasaki E, Ishii S, et al. Different roles of GPR120 and GPR40 in the acquisition of malignant properties in pancreatic cancer cells[J]. Biochem Biophys Res Commun, 2015, 465(3):512-515.
|
[29] |
Liu Z, Hopkins MM, Zhang Z, et al. Omega-3 fatty acids and other FFA4 agonists inhibit growth factor signaling in human prostate cancer cells[J]. J Pharmacol Exp Ther, 2015, 352(2):380-394.
|
[30] |
Kita T, Kadochi Y, Takahashi K, et al. Diverse effects of G-protein-coupled free fatty acid receptors on the regulation of cellular functions in lung cancer cells[J]. Exp Cell Res, 2016, 342(2):193-199.
|
[31] |
Meng FT, Huang M, Shao F, et al. Upregulated FFAR4 correlates with the epithelial-mesenchymal transition and an unfavorable prognosis in human cholangiocarcinoma[J]. Cancer Biomark, 2018, 23(3):353-361.
|
[32] |
Honorat M, Falson P, Terreux R, et al. Multidrug resistance ABC transporter structure predictions by homology modeling approaches[J]. Curr Drug Metab, 2011, 12(3):268-277.
|
[33] |
Reichert MC, Lammert F. ABCB4 gene aberrations in human liver disease: an evolving spectrum[J]. Semin Liver Dis, 2018, 38(4):299-307.
|
[34] |
Iannelli F, Collino A, Sinha S, et al. Massive gene amplification drives paediatric hepatocellular carcinoma caused by bile salt export pump deficiency[J]. Nat Commun, 2014(5):3850.
|
[35] |
Larbcharoensub N, Sornmayura P, Sirachainan E, et al. Prognostic value of ABCG2 in moderately and poorly differentiated intrahepatic cholangiocarcinoma[J]. Histopathology, 2011, 59(2):235-246.
|
[36] |
Srimunta U, Sawanyawisuth K, Kraiklang R, et al. High expression of ABCC1 indicates poor prognosis in intrahepatic cholangiocarcinoma[J]. Asian Pac J Cancer Prev, 2012, 13 Suppl: 125-130.
|
[37] |
Tepsiri N, Chaturat L, Sripa B, et al. Drug sensitivity and drug resistance profiles of human intrahepatic cholangiocarcinoma cell lines[J]. World J Gastroenterol, 2005, 11(18):2748-2753.
|
[38] |
Liang Q, Liu H, Zhang T, et al. Serum metabolomics uncovering specific metabolite signatures of intra- and extrahepatic cholangiocarcinoma[J]. Mol Biosyst, 2016, 12(2):334-340.
|
[39] |
Banales JM, Iñarrairaegui M, Arbelaiz A, et al. Serum metabolites as diagnostic biomarkers for cholangiocarcinoma, hepatocellular carcinoma, and primary sclerosing cholangitis[J]. Hepatology, 2019, 70(2):547-562.
|
[40] |
Haznadar M, Diehl CM, Parker AL, et al. Urinary metabolites diagnostic and prognostic of intrahepatic cholangiocarcinoma[J]. Cancer Epidemiol Biomarkers Prev, 2019, 28(10):1704-1711.
|
[41] |
Sharif AW, Williams HRT, Lampejo T, et al. Metabolic profiling of bile in cholangiocarcinoma using in vitro magnetic resonance spectroscopy[J]. HPB, 2010, 12(6):396-402.
|