[1] |
Augustine MM, Fong Y. Epidemiology and risk factors of biliary tract and primary liver tumors[J]. Surg Oncol Clin N Am, 2014, 23(2):171-188.
|
[2] |
van Dalen FJ, van Stevendaal MHME, Fennemann FL, et al. Molecular repolarisation of tumour-associated macrophages[J]. Molecules, 2018, 24(1):9.
|
[3] |
Najafi M, Goradel NH, Farhood B, et al. Macrophage polarity in cancer: a review[J]. J Cell Biochem, 2019, 120(3):2756-2765.
|
[4] |
Mantovani A, Marchesi F, Malesci A, et al. Tumour-associated macrophages as treatment targets in oncology[J]. Nat Rev Clin Oncol, 2017, 14(7):399-416.
|
[5] |
Hasita H, Komohara Y, Okabe H, et al. Significance of alternatively activated macrophages in patients with intrahepatic cholangiocarcinoma[J]. Cancer Sci, 2010, 101(8):1913-1919.
|
[6] |
Paillet J, Kroemer G, Pol JG. Immune contexture of cholangiocarcinoma[J]. Curr Opin Gastroenterol, 2020, 36(2):70-76.
|
[7] |
Chen Z, Guo P, Xie X, et al. The role of tumour microenvironment: a new vision for cholangiocarcinoma[J]. J Cell Mol Med, 2019, 23(1):59-69.
|
[8] |
Highfill SL, Cui Y, Giles AJ, et al. Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy[J]. Sci Transl Med, 2014, 6(237):237ra67.
|
[9] |
Dunne RF, Figueroa N, Belt B, et al. The role of myeloid derived suppressor cells in cholangiocarcinoma: a potential target for therapy[J]. J Clin Oncol, 2016, 34(suppl 4):273.
|
[10] |
Gabrilovich DI. Myeloid-derived suppressor cells[J]. Cancer Immunol Res, 2017, 5(1):3-8.
|
[11] |
Fridlender ZG, Albelda SM. Tumor-associated neutrophils: friend or foe?[J]. Carcinogenesis, 2012, 33(5):949-955.
|
[12] |
Fridlender ZG, Sun J, Kim S, et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN[J]. Cancer Cell, 2009, 16(3):183-194.
|
[13] |
Brandau S, Dumitru CA, Lang S. Protumor and antitumor functions of neutrophil granulocytes[J]. Semin Immunopathol, 2013, 35(2):163-176.
|
[14] |
Tan DW, Fu Y, Su Q, et al. Prognostic significance of neutrophil to lymphocyte ratio in oncologic outcomes of cholangiocarcinoma: a meta-analysis[J]. Sci Rep, 2016(6):33789.
|
[15] |
Chiossone L, Dumas PY, Vienne M, et al. Natural killer cells and other innate lymphoid cells in cancer[J]. Nat Rev Immunol, 2018, 18(11):671-688.
|
[16] |
Melum E, Karlsen TH, Schrumpf E, et al. Cholangiocarcinoma in primary sclerosing cholangitis is associated with NKG2D polymorphisms[J]. Hepatology, 2008, 47(1):90-96.
|
[17] |
Tsukagoshi M, Wada S, Yokobori T, et al. Overexpression of natural killer group 2 member D ligands predicts favorable prognosis in cholangiocarcinoma[J]. Cancer Sci, 2016, 107(2):116-122.
|
[18] |
Böttcher JP, Reis e Sousa C. The role of type 1 conventional dendritic cells in cancer immunity[J]. Trends Cancer, 2018, 4(11):784-792.
|
[19] |
Junking M, Grainok J, Thepmalee C, et al. Enhanced cytotoxic activity of effector T-cells against cholangiocarcinoma by dendritic cells pulsed with pooled mRNA[J]. Tumour Biol, 2017, 39(10): 1010428317733367.
|
[20] |
Najafi M, Goradel NH, Farhood B, et al. Tumor microenvironment: interactions and therapy[J]. J Cell Physiol, 2019, 234(5):5700-5721.
|
[21] |
Feng M, Jiang W, Kim BYS, et al. Phagocytosis checkpoints as new targets for cancer immunotherapy[J]. Nat Rev Cancer, 2019, 19(10): 568-586.
|
[22] |
Mortezaee K. Immune escape: a critical hallmark in solid tumors[J]. Life Sci, 2020(258):118110.
|
[23] |
Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment[J]. Science, 2015, 348(6230):74-80.
|
[24] |
Perkhofer L, Beutel AK, Ettrich TJ. Immunotherapy: pancreatic cancer and extrahepatic biliary tract cancer[J]. Visc Med, 2019, 35(1):28-37.
|
[25] |
Tariq N, Vogel A, McNamara MG, et al. Biliary tract cancer: implicated immune-mediated pathways and their associated potential targets[J]. Oncol Res Treat, 2018, 41(5):298-304.
|
[26] |
Massironi S, Pilla L, Elvevi A, et al. New and emerging systemic therapeutic options for advanced cholangiocarcinoma[J]. Cells, 2020, 9(3):688.
|
[27] |
Naboush A, Christopher AJR, Shapira I. Immune checkpoint inhibitors in malignancies with mismatch repair deficiency: a review of the state of the current knowledge[J]. J Investig Med, 2017, 65(4):754-758.
|
[28] |
Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade[J]. Science, 2017, 357(6349):409-413.
|
[29] |
Bang YJ, Ueno M, Malka D, et al. Pembrolizumab (pembro) for advanced biliary adenocarcinoma: results from the KEYNOTE-028 (KN028) and KEYNOTE-158 (KN158) basket studies[J]. J Clin Oncol, 2019, 37(suppl 15):4079.
|
[30] |
Silva VWK, Askan G, Daniel TD, et al. Biliary carcinomas: pathology and the role of DNA mismatch repair deficiency[J].Chin Clin Oncol, 2016, 5(5):62.
|
[31] |
Kim RD, Kim DW, Alese OB, et al. A phase II study of nivolumab in patients with advanced refractory biliary tract cancers (BTC)[J]. J Clin Oncol, 2019, 37(suppl 15):4097.
|
[32] |
Ueno M, Ikeda M, Morizane C, et al. Nivolumab alone or in combination with cisplatin plus gemcitabine in Japanese patients with unresectable or recurrent biliary tract cancer: a non-randomised, multicentre, open-label, phase 1 study[J]. Lancet Gastroenterol Hepatol, 2019, 4(8):611-621.
|
[33] |
Lan Y, Zhang D, Xu C, et al. Enhanced preclinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-β[J]. Sci Transl Med, 2018, 10(424):eaan5488.
|
[34] |
Yoo C, Oh DY, Choi HJ, et al. PhaseⅠstudy of bintrafusp alfa,a bifunctional fusion protein targeting TGF-β and PD-L1, in patients with pretreated biliary tract cancer[J]. J Immunother Cancer, 2020, 8(1):e000564.
|
[35] |
Hosen N. CAR T cell therapy[J]. Immunol Med, 2020(21):1-5.
|
[36] |
Goldstein D, Lemech C, Valle J. New molecular and immunotherapeutic approaches in biliary cancer[J]. ESMO Open, 2017, 2(Suppl 1):e000152.
|
[37] |
Kaida M, Morita-Hoshi Y, Soeda A, et al. Phase 1 trial of Wilms tumor 1 (WT1) peptide vaccine and gemcitabine combination therapy in patients with advanced pancreatic or biliary tract cancer[J].J Immunother, 2011, 34(1):92-99.
|
[38] |
Yamamoto K, Ueno T, Kawaoka T, et al. MUC1 peptide vaccination in patients with advanced pancreas or biliary tract cancer[J]. Anticancer Res, 2005, 25(5):3575-3579.
|