[1] |
Wing K, Sakaguchi S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity[J]. Nat Immunol, 2010, 11(1):7-13.
|
[2] |
Waldmann H, Hilbrands R, Howie D, et al. Harnessing FOXP3+ regulatory T cells for transplantation tolerance[J]. J Clin Invest, 2014, 124(4):1439-1445.
|
[3] |
Yuan X, Cheng G, Malek TR. The importance of regulatory T-cell heterogeneity in maintaining self-tolerance[J]. Immunol Rev, 2014, 259(1):103-114.
|
[4] |
Bestard O, Cruzado JM, Rama I, et al. Presence of FoxP3+ regulatory T cells predicts outcome of subclinical rejection of renal allografts[J]. J Am Soc Nephrol, 2008, 19(10):2020-2026.
|
[5] |
Krystufkova E, Sekerkova A, Striz I, et al. Regulatory T cells in kidney transplant recipients: the effect of induction immunosuppression therapy[J]. Nephrol Dial Transplant, 2012, 27(6):2576-2582.
|
[6] |
Zuber J, Brodin-Sartorius A, Lapidus N, et al. FOXP3-enriched infiltrates associated with better outcome in renal allografts with inflamed fibrosis[J]. Nephrol Dial Transplant, 2009, 24(12):3847-3854.
|
[7] |
Putnam AL, Safinia N, Medvec A, et al. Clinical grade manufacturing of human alloantigen-reactive regulatory T cells for use in transplantation[J]. Am J Transplant, 2013, 13(11):3010-3020.
|
[8] |
Sagoo P, Ali, Garg G, et al. Human regulatory T cells with alloantigen specificity are more potent inhibitors of alloimmune skin graft damage than polyclonal regulatory T cells[J]. Sci Transl Med, 2011, 3(83):83ra42.
|
[9] |
Hotta K, Aoyama A, Oura T, et al. Induced regulatory T cells in allograft tolerance via transient mixed chimerism[J]. JCI Insight, 2016, 1(10):e86419.
|
[10] |
Maus MV, June CH. Making better chimeric antigen receptors for adoptive T-cell therapy[J]. Clin Cancer Res, 2016, 22(8):1875-1884.
|
[11] |
Ellis JM, Henson V, Slack R, et al. Frequencies of HLA-A2 alleles in five U.S. population groups. predominance of A*02011 and identification of HLA-A*0231[J]. Hum Immunol, 2000, 61(3):334-340.
|
[12] |
Boardman DA, Philippeos C, Fruhwirth GO, et al. Expression of a chimeric antigen receptor specific for donor HLA classⅠenhances the potency of human regulatory T cells in preventing human skin transplant rejection[J]. Am J Transplant, 2017, 17(4):931-943.
|
[13] |
Zhang B, Chikuma S, Hori S, et al. Nonoverlapping roles of PD-1 and FoxP3 in maintaining immune tolerance in a novel autoimmune pancreatitis mouse model[J]. Proc Natl Acad Sci U S A, 2016, 113(30):8490-8495.
|
[14] |
Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer[J]. N Engl J Med, 2012, 366(26):2455-2465.
|
[15] |
Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer[J]. N Engl J Med, 2012, 366(26):2443-2454.
|
[16] |
Jiang N, Chen W, Zhang JW, et al. Aberrantly regulated dysadherin and B-cell lymphoma 2/B-cell lymphoma 2-associated X enhances tumorigenesis and DNA targeting drug resistance of liver cancer stem cells[J]. Mol Med Rep, 2015, 12(5):7239-7246.
|
[17] |
Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity[J]. Immunol Rev, 2010, 236: 219-242.
|
[18] |
Francisco LM, Salinas VH, Brown KE, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells[J]. J Exp Med, 2009, 206(13):3015-3029.
|
[19] |
Cai J, Wang D, Zhang G, et al. The role of PD-1/PD-L1 axis in Treg development and function: implications for cancer immunotherapy[J]. Onco Targets Ther, 2019, 12: 8437-8445.
|
[20] |
Lin CL, Huang HM, Hsieh CL, et al. Jagged1-expressing adenovirus-infected dendritic cells induce expansion of Foxp3+ regulatory T cells and alleviate T helper type 2-mediated allergic asthma in mice[J]. Immunology, 2019, 156(2):199-212.
|
[21] |
Tan CL, Kuchroo JR, Sage PT, et al. PD-1 restraint of regulatory T cell suppressive activity is critical for immune tolerance[J]. J Exp Med, 2021, 218(1):e20182232.
|
[22] |
Patsoukis N, Bardhan K, Chatterjee P, et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation[J]. Nat Commun, 2015, 6: 6692.
|
[23] |
Newton R, Priyadharshini B, Turka LA. Immunometabolism of regulatory T cells[J]. Nat Immunol, 2016, 17(6):618-625.
|
[24] |
Michalek RD, Gerriets VA, Jacobs SR, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets[J]. J Immunol, 2011, 186(6):3299-3303.
|
[25] |
Shi LZ, Wang R, Huang G, et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells[J]. J Exp Med, 2011, 208(7):1367-1376.
|
[26] |
Gerriets VA, Kishton RJ, Johnson MO, et al. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression[J]. Nat Immunol, 2016, 17(12):1459-1466.
|
[27] |
Wei J, Long L, Yang K, et al. Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis[J]. Nat Immunol, 2016, 17(3):277-285.
|
[28] |
Tanimine N, Germana SK, Fan M, et al. Differential effects of 2-deoxy-D-glucose on in vitro expanded human regulatory T cell subsets[J]. PLoS One, 2019, 14(6):e0217761.
|
[29] |
Rurik JG, Tombácz I, Yadegari A, et al. CAR T cells produced in vivo to treat cardiac injury[J]. Science, 2022, 375(6576):91-96.
|