切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2018, Vol. 07 ›› Issue (04) : 332 -337. doi: 10.3877/cma.j.issn.2095-3232.2018.04.018

所属专题: 文献

基础研究

microRNA-146在肝移植排斥反应中的调控作用及其机制
陈强星1, 张剑1,(), 李坤1, 朱曙光1, 肖翠翠1, 孔伟浩1, 黄泽楠1   
  1. 1. 510630 广州,中山大学附属第三医院肝移植科
  • 收稿日期:2018-05-22 出版日期:2018-08-10
  • 通信作者: 张剑
  • 基金资助:
    广东省科技计划项目(2014A020212159); 广州市科技计划项目(201707010112)

Regulatory effect and mechanism of microRNA-146 in graft rejection after liver transplantation

Qiangxing Chen1, Jian Zhang1,(), Kun Li1, Shuguang Zhu1, Cuicui Xiao1, Weihao Kong1, Zenan Huang1   

  1. 1. Department of Liver Transplantation, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
  • Received:2018-05-22 Published:2018-08-10
  • Corresponding author: Jian Zhang
  • About author:
    Corresponding author: Zhang Jian, Email:
引用本文:

陈强星, 张剑, 李坤, 朱曙光, 肖翠翠, 孔伟浩, 黄泽楠. microRNA-146在肝移植排斥反应中的调控作用及其机制[J]. 中华肝脏外科手术学电子杂志, 2018, 07(04): 332-337.

Qiangxing Chen, Jian Zhang, Kun Li, Shuguang Zhu, Cuicui Xiao, Weihao Kong, Zenan Huang. Regulatory effect and mechanism of microRNA-146 in graft rejection after liver transplantation[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2018, 07(04): 332-337.

目的

探讨microRNA(miR)-146在肝移植排斥反应中的调控作用及其机制。

方法

采用"二袖套法"建立两组原位肝移植模型,同种异体移植模型组(实验组)以Lewis大鼠为供体,BN大鼠为受体;同系移植模型组(对照组)以Lewis大鼠为供体,Lewis大鼠为受体,每组3只大鼠。移植术后7 d取肝脏组织进行病理组织学检测以及microRNA高通量测序;利用生物信息学网站对microRNA靶基因进行GO以及KEGG信号通路分析。

结果

病理学检测显示实验组肝脏组织排斥活动指数(RAI)为8.4±0.5,诊断为重度急性排斥反应;对照组RAI为1.5±0.5,诊断为无排斥反应。高通量测序显示可能与排斥反应高度相关的22种microRNA,其中21种microRNA在实验组表达均较对照组上调。21种上调的microRNA中有2种microRNA属于miR-146家族的成员,分别是miR-146a-5P和miR-146b-5P,其在实验组的表达量分别是对照组的1.1倍和2.3倍。GO和KEGG信号通路分析显示,miR-146a-5P和miR-146b-5P通过靶基因中白介素-1受体相关激酶1(IRAK1)、活化T细胞核因子5(NFAT5)和肿瘤坏死因子受体相关蛋白6(TRAF6)参与多条和免疫相关的信号通路。

结论

miR-146a-5P和miR-146b-5P的上调与同种异体肝移植大鼠排斥反应发生相关,其机制可能是通过调控IRAK1、NFAT5和TRAF6的表达介导多条免疫相关信号通路而发挥作用。

Objective

To investigate the regulatory effect and mechanism of microRNA-146 (miR-146) in graft rejection after liver transplantation (LT).

Methods

Orthotopic LT models of two groups were established using two-cuff technique. In the allotransplantation model group (experimental group), Lewis rats were used as the donors and BN rats as the recipients. In the isotransplantation model group (control group), Lewis rats were used as both the donors and recipients, with 3 rats in each group. At 7 d after LT, liver tissues were collected for histopathological examination and microRNA high-throughput sequencing. The GO and KEGG signaling pathways of miR-146 target genes were analyzed using bioinformatics website.

Results

Histopathological examination revealed that the rejection activity index (RAI) of liver tissues in the experimental group was 8.4±0.5 and the rats were diagnosed with severe acute rejection. In the control group, the RAI was 1.5±0.5 and the rats were diagnosed with no graft rejection. High-throughput sequencing showed that among 22 microRNAs which were probably closely associated with graft rejection, the expression levels of 21 were significantly up-regulated in the experimental group compared with those in the control group. Two of the 21 up-regulated microRNAs, miR-146a-5P and miR-146b-5P, were members of miR-146 family, and their expression levels were respectively 1.1 and 2.3 times of those in the control group. GO and KEGG signaling pathway analysis revealed that miR-146a-5P and miR-146b-5P participated in multiple immune-related signaling pathways via the target genes interleukin-1 receptor-associated kinase 1 (IRAK1), nuclear factor of activated T-cells 5 (NFAT5) and tumor necrosis factor receptor-associated protein family 6 (TRAF6).

Conclusions

The up-regulated expression levels of miR-146a-5P and miR-146b-5P are correlated with the incidence of graft rejection in rat with allogeneic LT. The mechanism is probably mediating multiple immune-related signaling pathways through regulating the expression of IRAK1, NFAT5 and TRAF6.

图1 实验组和对照组大鼠肝移植术后肝脏组织病理学变化情况(HE染色×50)
图2 实验组和对照组大鼠肝移植术后肝脏组织中22种microRNA的聚类分析结果
表1 实验组与对照组大鼠肝移植术后肝脏组织中差异表达的microRNA
图3 miR-146a-5P和miR-146b-5P的共同靶基因
表2 miR-146a-5P和miR-146b-5P靶基因的信号通路分析
[1]
Knechtle SJ, Kwun J. Unique aspects of rejection and tolerance in liver transplantation[J]. Semin Liver Dis, 2009, 29(1):91-101.
[2]
Samonakis DN, Germani G, Burroughs AK. Immunosuppression and HCV recurrence after liver transplantation[J]. J Hepatol, 2012, 56(4):973-983.
[3]
Ha M, Kim VN. Regulation of microRNA biogenesis[J]. Nat Rev Mol Cell Biol, 2014, 15(8):509-524.
[4]
Jeker LT, Bluestone JA. MicroRNA regulation of T-cell differentiation and function[J]. Immunol Rev, 2013, 253(1):65-81.
[5]
Dweep H, Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions[J]. Nat Methods, 2015, 12(8):697.
[6]
Chen Y, Liang S, Long F, et al. Augmenter of liver regeneration attenuates acute rejection after rat liver transplantation[J]. Am J Surg, 2016, 212(1):128-137.
[7]
Morita M, Chen J, Fujino M, et al. Identification of microRNAs involved in acute rejection and spontaneous tolerance in murine hepatic allografts[J]. Sci Rep, 2014(4):6649.
[8]
Mashima R. Physiological roles of miR-155[J]. Immunology, 2015, 145(3):323-333.
[9]
Li J, Gong J, Li P, et al. Knockdown of microRNA-155 in Kupffer cells results in immunosuppressive effects and prolongs survival of mouse liver allografts[J]. Transplantation, 2014, 97(6):626-635.
[10]
Yang HY, Barbi J, Wu CY, et al. MicroRNA-17 modulates regulatory T cell function by targeting co-regulators of the Foxp3 transcription factor[J]. Immunity, 2016, 45(1):83-93.
[11]
Jeker LT, Zhou X, Gershberg K, et al. MicroRNA 10a marks regulatory T cells[J]. PLoS One, 2012, 7(5):e36684.
[12]
Gao M, Wang X, Zhang X, et al. Attenuation of cardiac dysfunction in polymicrobial sepsis by microRNA-146a is mediated via targeting of IRAK1 and TRAF6 expression[J]. J Immunol, 2015, 195(2):672-682.
[13]
Baumjohann D, Ansel KM. MicroRNA-mediated regulation of T helper cell differentiation and plasticity[J]. Nat Rev Immunol, 2013, 13(9):666-678.
[14]
Khan MA, Moeez S, Akhtar S. T-regulatory cell-mediated immune tolerance as a potential immunotherapeutic strategy to facilitate graft survival[J]. Blood Transfus, 2013, 11(3):357-363.
[15]
Alpdogan O, van den Brink MR. Immune tolerance and transplantation[J]. Semin Oncol, 2012, 39(6):629-642.
[16]
张剑,张琪,姜楠,等.CTLA4Ig和CD40LIg基因修饰骨髓间充质干细胞在异种胰岛移植排斥反应中的作用[J].第三军医大学学报,2011,33(23):2450-2453.
[17]
Lu LF, Boldin MP, Chaudhry A, et al. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses[J]. Cell, 2010, 142(6):914-929.
[18]
Echavarria R, Mayaki D, Neel JC, et al. Angiopoietin-1 inhibits toll-like receptor 4 signalling in cultured endothelial cells: role of miR-146b-5p[J]. Cardiovasc Res, 2015, 106(3):465-477.
[19]
Park H, Huang X, Lu C, et al. MicroRNA-146a and microRNA-146b regulate human dendritic cell apoptosis and cytokine production by targeting TRAF6 and IRAK1 proteins[J]. J Biol Chem, 2015, 290(5):2831-2841.
[20]
Berga-Bolaños R, Drews-Elger K, Aramburu J, et al. NFAT5 regulates T lymphocyte homeostasis and CD24-dependent T cell expansion under pathologic hypernatremia[J]. J Immunol, 2010, 185(11):6624-6635.
[21]
Li W, Kong LB, Li JT, et al. MiR-568 inhibits the activation and function of CD4+ T cells and Treg cells by targeting NFAT5[J]. Int Immunol, 2014, 26(5):269-281.
[1] . 肝移植治疗终末期肝病[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 1-.
[2] 周东杰, 蒋敏, 范海瑞, 高玲玲, 孔祥, 卢丹, 王丽萍. 非编码RNA在卵泡发育成熟中作用及其机制的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 387-393.
[3] 李坤河, 寇萌佳, 邝立挺. 肝移植术后二次气管插管的危险因素及预测模型的建立[J]. 中华普通外科学文献(电子版), 2023, 17(05): 366-371.
[4] 中华医学会器官移植学分会, 中国医师协会器官移植医师分会, 上海医药行业协会. 中国肝、肾移植受者霉酚酸类药物应用专家共识(2023版)[J]. 中华移植杂志(电子版), 2023, 17(05): 257-272.
[5] 陆闻青, 陈昕怡, 任雪飞. 遗传代谢病儿童肝移植受者术后生活质量调查研究[J]. 中华移植杂志(电子版), 2023, 17(05): 287-292.
[6] 范铁艳, 李君, 陈虹. 肝移植术后新发戊型病毒性肝炎的诊治经验[J]. 中华移植杂志(电子版), 2023, 17(05): 293-296.
[7] 陈朔, 陈峰, 程飞, 项捷. 糖原累积病Ⅰ型并发胰腺炎肝移植术后胰腺梗死一例[J]. 中华移植杂志(电子版), 2023, 17(05): 300-302.
[8] 汤鹏昊, 张武. 肠道微生态与肝移植围手术期并发症相关研究进展[J]. 中华移植杂志(电子版), 2023, 17(05): 303-307.
[9] 中国器官移植发展基金会器官移植受者健康管理专家委员会, 中国医师协会器官移植医师分会, 中华医学会器官移植学分会, 国家肝脏移植质控中心. 肝移植受者雷帕霉素靶蛋白抑制剂临床应用中国专家共识(2023版)[J]. 中华移植杂志(电子版), 2023, 17(04): 193-204.
[10] 严庆, 刘颖, 邓斐文, 陈焕伟. 微血管侵犯对肝癌肝移植患者生存预后的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 624-629.
[11] 廖梅, 张红君, 金洁玚, 吕艳, 任杰. 床旁超声造影对肝移植术后早期肝动脉血栓的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 630-634.
[12] 李秉林, 吕少诚, 潘飞, 姜涛, 樊华, 寇建涛, 贺强, 郎韧. 供肝灌注液病原菌与肝移植术后早期感染的相关性分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 656-660.
[13] 吕垒, 冯啸, 何凯明, 曾凯宁, 杨卿, 吕海金, 易慧敏, 易述红, 杨扬, 傅斌生. 改良金氏评分在儿童肝豆状核变性急性肝衰竭肝移植手术时机评估中价值并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 661-668.
[14] 王孟龙. 肿瘤生物学特征在肝癌肝移植治疗中的意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 490-494.
[15] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
阅读次数
全文


摘要