切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2018, Vol. 07 ›› Issue (04) : 327 -331. doi: 10.3877/cma.j.issn.2095-3232.2018.04.017

所属专题: 文献

基础研究

BDH2基因对肝癌细胞增殖能力的抑制作用及机制
梁豪1, 熊志勇2, 姚志成2, 李瑞曦1, 孔伟浩3, 徐见亮1, 曹明波1, 邓美海1,()   
  1. 1. 510630 广州,中山大学附属第三医院肝胆外科
    2. 510530 广州,中山大学附属第三医院岭南医院普通外科
    3. 510630 广州,中山大学附属第三医院肝移植科
  • 收稿日期:2018-05-09 出版日期:2018-08-10
  • 通信作者: 邓美海
  • 基金资助:
    广东省自然科学基金(2016A030313848); 广州市科技计划项目(2013J4100061)

Inhibiting effect and its mechanism of BDH2 gene on the proliferation of liver cancer cells

Hao Liang1, Zhiyong Xiong2, Zhicheng Yao2, Ruixi Li1, Weihao Kong3, Jianliang Xu1, Mingbo Cao1, Meihai Deng1,()   

  1. 1. Department of Hepatobiliary Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
    2. Department of General Surgery, Lingnan Hospital, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510530, China
    3. Department of Liver Transplantation, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
  • Received:2018-05-09 Published:2018-08-10
  • Corresponding author: Meihai Deng
  • About author:
    Corresponding author: Deng Meihai, Email:
引用本文:

梁豪, 熊志勇, 姚志成, 李瑞曦, 孔伟浩, 徐见亮, 曹明波, 邓美海. BDH2基因对肝癌细胞增殖能力的抑制作用及机制[J/OL]. 中华肝脏外科手术学电子杂志, 2018, 07(04): 327-331.

Hao Liang, Zhiyong Xiong, Zhicheng Yao, Ruixi Li, Weihao Kong, Jianliang Xu, Mingbo Cao, Meihai Deng. Inhibiting effect and its mechanism of BDH2 gene on the proliferation of liver cancer cells[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2018, 07(04): 327-331.

目的

探讨β-羟丁酸脱氢酶2(BDH2)基因对肝癌细胞增殖能力的抑制作用及其机制。

方法

合成表达BDH2的慢病毒载体,构建稳定表达BDH2的肝癌细胞株HepG2-BDH2(实验组)和对照细胞株HepG2-Vector(对照组)。RT-PCR检测两组细胞中BDH2 mRNA表达水平。采用CCK-8法检测两组肝癌细胞的增殖能力,平板克隆实验观察两组细胞的克隆形成能力。Western blot检测BDH2蛋白和Bcl-2细胞凋亡相关蛋白的表达。实验数据比较采用t检验。

结果

实验组BDH2 mRNA表达量为(2.20±0.10)×10-3,明显高于对照组的(0.20±0.01)×10-3t=34.95,P<0.05)。实验组细胞培养3、4、5、6、7 d的A450值分别为0.55±0.20、0.73±0.02、1.26±0.12、1.62±0.14、2.19±0.12,明显低于对照组的0.70±0.06、1.13±0.08、1.77±0.15、2.45±0.12、3.02±0.15(t=-5.19,-11.34,-5.96,-10.35,-9.54;P<0.05)。细胞生长曲线显示实验组肝癌细胞的增殖能力明显弱于对照组。平板克隆实验结果显示,实验组细胞克隆形成数目为(184±7)个,明显少于对照组的(429±15)个(t=-25.84,P<0.05)。与对照组相比,实验组的BDH2、cleaved caspase-3蛋白表达明显升高,而Bcl-2蛋白表达明显降低。

结论

BDH2基因可抑制肝癌细胞增殖,其机制可能是通过Bcl-2信号通路促进肝癌细胞的凋亡。

Objective

To investigate the inhibiting effect and its mechanism of β-hydroxybutyrate dehydrogenase 2 (BDH2) gene on the proliferation of liver cancer cells.

Methods

The lentiviral vectors expressing BDH2 were constructed. The liver cancer cell line HepG2-BDH2 stably expressing BDH2 (experimental group) and the control cell line HepG2-Vector (control group) were established. The expression levels of BDH2 mRNA in two groups were detected by RT-PCR. The proliferation of liver cancer cells in two groups was detected by CCK-8 assay. The colony formation ability of cells was observed in two groups by colony formation assay. The expression of BDH2 protein and apoptosis-associated protein Bcl-2 was detected by Western blot. The experimental data were compared using t test.

Results

In experimental group, the expression level of BDH2 mRNA was (2.20±0.10)×10-3, which was significantly higher than (0.20±0.01)×10-3 in control group (t=34.95, P<0.05). In experimental group, the A450 values at 3, 4, 5, 6 and 7 d after cell culture were 0.55±0.20, 0.73±0.02, 1.26±0.12, 1.62±0.14 and 2.19±0.12, which were significantly lower than 0.70±0.06, 1.13±0.08, 1.77±0.15, 2.45±0.12 and 3.02±0.15 in control group (t=-5.19, -11.34, -5.96, -10.35, -9.54; P<0.05), respectively. The cell proliferation curve showed that the proliferation of cells in experimental group was significantly weaker than that in control group. Colony formation assay indicated that the number of cell clones in experimental group was 184±7, which was significantly less than 429±15 in control group (t=-25.84, P<0.05). Compared with control group, the expression levels of BDH2 and cleaved caspase-3 protein in experimental group were up-regulated significantly, whereas the expression level of Bcl-2 protein was down-regulated significantly.

Conclusions

BDH2 gene can inhibit the proliferation of liver cancer cells probably through promoting the apoptosis of liver cancer cells via Bcl-2 signaling pathway.

图1 实验组与对照组HepG2细胞生长曲线
图2 实验组与对照组HepG2细胞的平板克隆实验结果
图3 实验组与对照组BDH2、Bcl-2、cleaved caspase-3蛋白表达情况
[1]
Waller LP, Deshpande V, Pyrsopoulos N. Hepatocellular carcinoma: a comprehensive review[J]. World J Hepatol, 2015, 7(26):2648-2663.
[2]
Obeid JM, Kunk PR, Zaydfudim VM, et al. Immunotherapy for hepatocellular carcinoma patients: is it ready for prime time?[J]. Cancer Immunol Immunother, 2018, 67(2):161-174.
[3]
Bralet MP, Régimbeau JM, Pineau P, et al. Hepatocellular carcinoma occurring in nonfibrotic liver: epidemiologic and histopathologic analysis of 80 French cases[J]. Hepatology, 2000, 32(2):200-204.
[4]
Pascual S, Herrera I, Irurzun J. New advances in hepatocellular carcinoma[J]. World J Hepatol, 2016, 8(9):421-438.
[5]
Guo K, Lukacik P, Papagrigoriou E, et al. Characterization of human DHRS6, an orphan short chain dehydrogenase/reductase enzyme: a novel, cytosolic type 2 R-beta-hydroxybutyrate dehydrogenase[J]. J Biol Chem, 2006, 281(15):10291-10297.
[6]
Devireddy LR, Hart DO, Goetz DH, et al. A mammalian siderophore synthesized by an enzyme with a bacterial homolog involved in enterobactin production[J]. Cell, 2010, 141(6):1006-1017.
[7]
Yang WC, Tsai WC, Lin PM, et al. Human BDH2, an anti-apoptosis factor, is a novel poor prognostic factor for de novo cytogenetically normal acute myeloid leukemia[J]. J Biomed Sci, 2013(20):58.
[8]
Huang D, Li T, Wang L, et al. Hepatocellular carcinoma redirects to ketolysis for progression under nutrition deprivation stress[J]. Cell Res, 2016, 26(10):1112-1130.
[9]
Boroughs LK, DeBerardinis RJ. Metabolic pathways promoting cancer cell survival and growth[J]. Nat Cell Biol, 2015, 17(4):351-359.
[10]
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation[J]. Science, 2009, 324(5930):1029-1033.
[11]
DeNicola GM, Cantley LC. Cancer's fuel choice: new flavors fora picky eater[J]. Mol Cell, 2015, 60(4):514-523.
[12]
Aneja P, Dziak R, Cai GQ, et al. Identification of an acetoacetyl coenzyme A synthetase-dependent pathway for utilization of L-(+)-3-hydroxybutyrate in Sinorhizobium meliloti[J]. J Bacteriol, 2002, 184(6):1571-1577.
[13]
Cahill GF Jr. Fuel metabolism in starvation[M]. Pennsylvania: Annu Rev Nutr, 2006:1-22.
[14]
Krishnakumar AM, Sliwa D, Endrizzi JA, et al. Getting a handle on the role of coenzyme M in alkene metabolism[J]. Microbiol Mol Biol Rev, 2008, 72(3):445-456.
[15]
Dedkova EN, Blatter LA. Role of β-hydroxybutyrate, its polymer poly-β- hydroxybutyrate and inorganic polyphosphate in mammalian health and disease[J]. Front Physiol, 2014(5):260.
[16]
Kanikarla-Marie P, Jain SK. Hyperketonemia and ketosis increase the risk of complications in type 1 diabetes[J]. Free Radic Biol Med, 2016(95):268-277.
[17]
Pavlides S, Tsirigos A, Migneco G, et al. The autophagic tumor stroma model of cancer: role of oxidative stress and ketone production in fueling tumor cell metabolism[J]. Cell Cycle, 2010, 9(17):3485-3505.
[18]
Maurer GD, Brucker DP, Bähr O, et al. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy[J]. BMC Cancer, 2011(11):315.
[19]
Strasser A, Vaux DL. Viewing BCL2 and cell death control from an evolutionary perspective[J]. Cell Death Differ, 2018, 25(1):13-20.
[1] 中国医师协会肝癌专业委员会. 肝细胞癌伴微血管侵犯诊断和治疗中国专家共识(2024版)[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 313-324.
[2] 李华志, 曹广, 刘殿刚, 张雅静. 不同入路下行肝切除术治疗原发性肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 52-55.
[3] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[4] 屈翔宇, 张懿刚, 李浩令, 邱天, 谈燚. USP24及其共表达肿瘤代谢基因在肝细胞癌中的诊断和预后预测作用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 659-662.
[5] 祝炜安, 林华慧, 吴建杰, 黄炯煅, 吴婷婷, 赖文杰. RDM1通过CDK4促进前列腺癌细胞进展的研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 618-625.
[6] 黄程鑫, 陈莉, 刘伊楚, 王水良, 赖晓凤. OPA1 在乳腺癌组织的表达特征及在ER阳性乳腺癌细胞中的生物学功能研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 275-284.
[7] 公宇, 廖媛, 尚梅. 肝细胞癌TACE术后复发影响因素及预测模型建立[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 818-824.
[8] 李一帆, 朱帝文, 任伟新, 鲍应军, 顾俊鹏, 张海潇, 曹耿飞, 阿斯哈尔·哈斯木, 纪卫政. 血GP73水平在原发性肝癌TACE疗效评价中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 825-830.
[9] 刘敏思, 李荣, 李媚. 基于GGT与Plt比值的模型在HBV相关肝细胞癌诊断中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 831-835.
[10] 焦振东, 惠鹏, 金上博. 三维可视化结合ICG显像技术在腹腔镜肝切除术治疗复发性肝癌中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 859-864.
[11] 陈晓鹏, 王佳妮, 练庆海, 杨九妹. 肝细胞癌VOPP1表达及其与预后的关系[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 876-882.
[12] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[13] 吴警, 吐尔洪江·吐逊, 温浩. 肝切除术前肝功能评估新进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 889-893.
[14] 邓万玉, 陈富, 许磊波. 肝硬化与非肝硬化乙肝相关性肝癌患者术后无复发生存比较及其影响因素分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 670-674.
[15] 王向前, 李清峰, 陈磊, 丘文丹, 姚志成, 李熠, 吴荣焕. 姜黄素抑制肝细胞癌索拉非尼耐药作用及其调控机制[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 729-735.
阅读次数
全文


摘要