[1] |
Lee UE, Friedman SL. Mechanisms of hepatic fibrogenesis[J]. Best Pract Res Clin Gastroenterol, 2011, 25(2):195-206.
|
[2] |
Zhao Q, Qin CY, Zhao ZH, et al. Epigenetic modifications in hepatic stellate cells contribute to liver fibrosis[J]. Tohoku J Exp Med, 2013, 229(1):35-43.
|
[3] |
Novo E, Cannito S, Paternostro C, et al. Cellular and molecular mechanisms in liver fibrogenesis[J]. Arch Biochem Biophys, 2014(548):20-37.
|
[4] |
Kong D, Zhang F, Zhang Z, et al. Clearance of activated stellate cells for hepatic fibrosis regression: molecular basis and translational potential[J]. Biomed Pharmacother, 2013, 67(3):246-250.
|
[5] |
Pan RL, Wang P, Xiang LX, et al. Delta-like 1 serves as a new target and contributor to liver fibrosis down-regulated by mesenchymal stem cell transplantation[J]. J Biol Chem, 2011, 286(14):12340-12348.
|
[6] |
Wang PP, Xie DY, Liang XJ, et al. HGF and direct mesenchymal stem cells contact synergize to inhibit hepatic stellate cells activation through TLR4/NF-kB pathway[J]. PLoS One, 2012, 7(8):e43408.
|
[7] |
Qin S, Jiang H, Su S, et al. Inhibition of hepatic stellate cell proliferation by bone marrow mesenchymal stem cells via regulation of the cell cycle in rat[J]. Exp Ther Med, 2012, 4(3):375-380.
|
[8] |
Chen S, Xu L, Lin N, et al. Activation of Notch1 signaling by marrow-derived mesenchymal stem cells through cell-cell contact inhibits proliferation of hepatic stellate cells[J]. Life Sci, 2011, 89(25/26): 975-981.
|
[9] |
Yin C, Evason KJ, Asahina K, et al. Hepatic stellate cells in liver development, regeneration, and cancer[J]. J Clin Invest, 2013, 123(5):1902-1910.
|
[10] |
Li M, Ikehara S. Bone-marrow-derived mesenchymal stem cells for organ repair[J]. Stem Cells Int, 2013:132642.
|
[11] |
van Poll D, Parekkadan B, Cho CH, et al. Mesenchymal stem cell-derived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo[J]. Hepatology, 2008, 47(5):1634-1643.
|
[12] |
Cui L, Shi Y, Han Y, et al. Immunological basis of stem cell therapy in liver diseases[J]. Expert Rev Clin Immunol, 2014, 10(9):1185-1196.
|
[13] |
Lu D, Liao Y, Zhu SH, et al. Bone-derived Nestin-positive mesenchymal stem cells improve cardiac function via recruiting cardiac endothelial cells after myocardial infarction[J]. Stem Cell Res Ther, 2019, 10(1):127.
|
[14] |
Gabrielyan A, Neumann E, Gelinsky M, et al. Metabolically conditioned media derived from bone marrow stromal cells or human skin fibroblasts act as effective chemoattractants for mesenchymal stem cells[J]. Stem Cell Res Ther, 2017, 8(1):212.
|
[15] |
Li M, Zhao W, Gao Y, et al. Differentiation of bone marrow mesenchymal stem cells into neural lineage cells induced by bFGF-Chitosan controlled release system[J]. Biomed Res Int, 2019: 5086297.
|
[16] |
Cao HJ, Wang MD, Li SG, et al. Paracrine effect of bone marrow mesenchymal stem cells on proliferation, apoptosis, and alpha-actin-2 expression in hepatic stellate cells[J]. Genet Mol Res, 2017, DOI: 10.4238/gmr16019201[Epub ahead of print].
|
[17] |
Koch U, Lehal R, Radtke F. Stem cells living with a Notch[J]. Development, 2013, 140(4):689-704.
|
[18] |
Andersson ER, Sandberg R, Lendahl U. Notch signaling: simplicity in design, versatility in function[J]. Development, 2011, 138(17):3593-3612.
|
[19] |
D'Souza B, Meloty-Kapella L, Weinmaster G. Canonical and non-canonical Notch ligands[J]. Curr Top Dev Biol, 2010(92):73-129.
|
[20] |
Morell CM, Strazzabosco M. Notch signaling and new therapeutic options in liver disease[J]. J Hepatol, 2014, 60(4):885-890.
|