切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2021, Vol. 10 ›› Issue (01) : 104 -107. doi: 10.3877/cma.j.issn.2095-3232.2021.01.022

所属专题: 文献

综述

肿瘤相关成纤维细胞在胆管细胞癌中的作用
刘润坤1, 王亮1, 涂康生1,()   
  1. 1. 710061 西安交通大学第一附属医院肝胆外科
  • 收稿日期:2020-10-28 出版日期:2021-02-10
  • 通信作者: 涂康生
  • 基金资助:
    陕西省自然科学基础研究计划(2019JM-133)

Effects of cancer associated fibroblasts on cholangiocarcinoma

Runkun Liu1, Liang Wang1, kangsheng Tu1()   

  • Received:2020-10-28 Published:2021-02-10
  • Corresponding author: kangsheng Tu
引用本文:

刘润坤, 王亮, 涂康生. 肿瘤相关成纤维细胞在胆管细胞癌中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2021, 10(01): 104-107.

Runkun Liu, Liang Wang, kangsheng Tu. Effects of cancer associated fibroblasts on cholangiocarcinoma[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2021, 10(01): 104-107.

[1]
Ruzzenente A, Conci S, Valdegamberi A, et al. Role of surgery in the treatment of intrahepatic cholangiocarcinoma[J]. Eur Rev Med Pharmacol Sci, 2015, 19(15):2892-2900.
[2]
Lee JI, Campbell JS. Role of desmoplasia in cholangiocarcinoma and hepatocellular carcinoma[J]. J Hepatol, 2014, 61(2): 432-434.
[3]
Kalluri R, Zeisberg M. Fibroblasts in cancer[J]. Nat Rev Cancer, 2006, 6(5):392-401.
[4]
Andersen JB, Spee B, Blechacz BR, et al. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors[J]. Gastroenterology, 2012, 142(4): 1021-1031, e15.
[5]
Jacob M, Chang L, Puré E. Fibroblast activation protein in remodeling tissues[J]. Curr Mol Med, 2012, 12(10):1220-1243.
[6]
Lemoinne S, Thabut D, Housset C. Portal myofibroblasts connect angiogenesis and fibrosis in liver[J]. Cell Tissue Res, 2016, 365(3): 583-589.
[7]
Itou RA, Uyama N, Hirota S, et al. Immunohistochemical characterization of cancer-associated fibroblasts at the primary sites and in the metastatic lymph nodes of human intrahepatic cholangiocarcinoma[J]. Hum Pathol, 2019(83):77-89.
[8]
Cadamuro M, Nardo G, Indraccolo S, et al. Platelet-derived growth factor-D and Rho GTPases regulate recruitment of cancer-associated fibroblasts in cholangiocarcinoma[J]. Hepatology, 2013, 58(3):1042-1053.
[9]
Kalluri R. The biology and function of fibroblasts in cancer[J].Nat Rev Cancer, 2016, 16(9):582-598.
[10]
Weber CE, Kothari AN, Wai PY, et al. Osteopontin mediates an MZF1-TGF-beta1-dependent transformation of mesenchymal stem cells into cancer-associated fibroblasts in breast cancer[J]. Oncogene, 2015, 34(37):4821-4833.
[11]
Zheng L, Xu C, Guan Z, et al. Galectin-1 mediates TGF-β-induced transformation from normal fibroblasts into carcinoma-associated fibroblasts and promotes tumor progression in gastric cancer[J].Am J Transl Res, 2016, 8(4):1641-1658.
[12]
Shiga K, Hara M, Nagasaki T, et al. Cancer-associated fibroblasts: their characteristics and their roles in tumor growth[J]. Cancers, 2015, 7(4):2443-2458.
[13]
Dominguez C, David JM, Palena C. Epithelial-mesenchymal transition and inflammation at the site of the primary tumor[J]. Semin Cancer Biol, 2017(47):177-184.
[14]
Petrova V, Annicchiarico-Petruzzelli M, Melino G, et al. The hypoxic tumour microenvironment[J]. Oncogenesis, 2018, 7(1):10.
[15]
Clapéron A, Mergey M, Aoudjehane L, et al. Hepatic myofibroblasts promote the progression of human cholangiocarcinoma through activation of epidermal growth factor receptor[J]. Hepatology, 2013, 58(6):2001-2011.
[16]
Gentilini A, Rombouts K, Galastri S, et al. Role of the stromal-derived factor-1 (SDF-1)-CXCR4 axis in the interaction between hepatic stellate cells and cholangiocarcinoma[J]. J Hepatol, 2012, 57(4):813-820.
[17]
Vaquero J, Lobe C, Tahraoui S, et al. The IGF2/IR/IGF1R pathway in tumor cells and myofibroblasts mediates resistance to EGFR inhibition in cholangiocarcinoma[J]. Clin Cancer Res, 2018, 24(17): 4282-4296.
[18]
Sha M, Jeong S, Qiu BJ, et al. Isolation of cancer-associated fibroblasts and its promotion to the progression of intrahepatic cholangiocarcinoma[J]. Cancer Med, 2018, 7(9):4665-4677.
[19]
Okabe H, Beppu T, Hayashi H, et al. Hepatic stellate cells may relate to progression of intrahepatic cholangiocarcinoma[J]. Ann Surg Oncol, 2009, 16(9):2555-2564.
[20]
Thongchot S, Ferraresi A, Vidoni C, et al. Resveratrol interrupts the pro-invasive communication between cancer associated fibroblasts and cholangiocarcinoma cells[J]. Cancer Lett, 2018(430):160-171.
[21]
Techasen A, Loilome W, Namwat N, et al. Loss of E-cadherin promotes migration and invasion of cholangiocarcinoma cells and serves as a potential marker of metastasis[J]. Tumour Biol, 2014, 35(9):8645-8652.
[22]
Heits N, Heinze T, Bernsmeier A, et al. Influence of mTOR-inhibitors and mycophenolic acid on human cholangiocellular carcinoma and cancer associated fibroblasts[J]. BMC Cancer, 2016(16):322.
[23]
Cadamuro M, Brivio S, Mertens J, et al. Platelet-derived growth factor-D enables liver myofibroblasts to promote tumor lymphangiogenesis in cholangiocarcinoma[J]. J Hepatol, 2019, 70(4):700-709.
[24]
Stacker SA, Williams SP, Karnezis T, et al. Lymphangiogenesis and lymphatic vessel remodelling in cancer[J]. Nat Rev Cancer, 2014, 14(3):159-172.
[25]
Mertens JC, Fingas CD, Christensen JD, et al. Therapeutic effects of deleting cancer-associated fibroblasts in cholangiocarcinoma[J]. Cancer Res, 2013, 73(2):897-907.
[26]
Obulkasim H, Shi X, Wang J, et al. Podoplanin is an important stromal prognostic marker in perihilar cholangiocarcinoma[J]. Oncol Lett, 2018, 15(1):137-146.
[27]
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297.
[28]
Utaijaratrasmi P, Vaeteewoottacharn K, Tsunematsu T, et al. The microRNA-15a-PAI-2 axis in cholangiocarcinoma-associated fibroblasts promotes migration of cancer cells[J]. Mol Cancer, 2018, 17(1):10.
[29]
Kim CD, Sohn KC, Lee SS, et al. Plasminogen activator inhibitor-2 (PAI-2) secreted from activated mast cells induces α-smooth muscle actin (α-SMA) expression in dermal fibroblasts[J]. J Dermatol Sci, 2011, 62(3):204-206.
[30]
Ferraresi A, Phadngam S, Morani F, et al. Resveratrol inhibits IL-6-induced ovarian cancer cell migration through epigenetic up-regulation of autophagy[J]. Mol Carcinog, 2017, 56(3): 1164-1181.
[31]
Liu LZ, Yang LX, Zheng BH, et al. CK7/CK19 index: a potential prognostic factor for postoperative intrahepatic cholangiocarcinoma patients[J]. J Surg Oncol, 2018, 117(7): 1531-1539.
[32]
Subimerb C, Wongkham C, Khuntikeo N, et al. Transcriptional profiles of peripheral blood leukocytes identify patients with cholangiocarcinoma and predict outcome[J]. Asian Pac J Cancer Prev, 2014, 15(10): 4217-4224.
[1] 史学兵, 谢迎东, 谢霓, 徐超丽, 杨斌, 孙帼. 声辐射力弹性成像对不可切除肝细胞癌门静脉癌栓患者放射治疗效果的评价[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 778-784.
[2] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[3] 李华志, 曹广, 刘殿刚, 张雅静. 不同入路下行肝切除术治疗原发性肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 52-55.
[4] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[5] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
[6] 冯旺, 马振中, 汤林花. CT扫描三维重建在肝内胆管细胞癌腹腔镜肝切除术中的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 104-107.
[7] 陈浩, 王萌. 胃印戒细胞癌的临床病理特征及治疗选择的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 108-111.
[8] 刘柏隆, 周祥福. 压力性尿失禁阶梯治疗的项目介绍[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 125-125.
[9] 刘柏隆. 女性压力性尿失禁阶梯治疗之手术治疗方案选择[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 126-126.
[10] 石海波, 赵旭东, 王聪, 曲巍. 气肿性肾盂肾炎、气肿性膀胱炎并脓毒性休克一例报道并文献复习[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 644-647.
[11] 林逸, 钟文龙, 李锴文, 何旺, 林天歆. 广东省医学会泌尿外科疑难病例多学科会诊(第15期)——转移性膀胱癌的综合治疗[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 648-652.
[12] 吴天宇, 刘子璇, 杨浦鑫, 贾思明, 丁凯, 程晓东, 李泳龙, 陈伟, 吕红芝, 张奇. 腰椎间盘突出症保守治疗进展[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 379-384.
[13] 王景明, 王磊, 许小多, 邢文强, 张兆岩, 黄伟敏. 腰椎椎旁肌的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 846-852.
[14] 王誉英, 刘世伟, 王睿, 曾娅玲, 涂禧慧, 张蒲蓉. 老年乳腺癌新辅助治疗病理完全缓解的预测因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 641-646.
[15] 崔军威, 蔡华丽, 胡艺冰, 胡慧. 亚甲蓝联合金属定位夹及定位钩针标记在乳腺癌辅助化疗后评估腋窝转移淋巴结的临床应用价值探究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 625-632.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?