切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2021, Vol. 10 ›› Issue (01) : 104 -107. doi: 10.3877/cma.j.issn.2095-3232.2021.01.022

所属专题: 文献

综述

肿瘤相关成纤维细胞在胆管细胞癌中的作用
刘润坤1, 王亮1, 涂康生1,()   
  1. 1. 710061 西安交通大学第一附属医院肝胆外科
  • 收稿日期:2020-10-28 出版日期:2021-02-10
  • 通信作者: 涂康生
  • 基金资助:
    陕西省自然科学基础研究计划(2019JM-133)

Effects of cancer associated fibroblasts on cholangiocarcinoma

Runkun Liu1, Liang Wang1, kangsheng Tu1()   

  • Received:2020-10-28 Published:2021-02-10
  • Corresponding author: kangsheng Tu
引用本文:

刘润坤, 王亮, 涂康生. 肿瘤相关成纤维细胞在胆管细胞癌中的作用[J]. 中华肝脏外科手术学电子杂志, 2021, 10(01): 104-107.

Runkun Liu, Liang Wang, kangsheng Tu. Effects of cancer associated fibroblasts on cholangiocarcinoma[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2021, 10(01): 104-107.

[1]
Ruzzenente A, Conci S, Valdegamberi A, et al. Role of surgery in the treatment of intrahepatic cholangiocarcinoma[J]. Eur Rev Med Pharmacol Sci, 2015, 19(15):2892-2900.
[2]
Lee JI, Campbell JS. Role of desmoplasia in cholangiocarcinoma and hepatocellular carcinoma[J]. J Hepatol, 2014, 61(2): 432-434.
[3]
Kalluri R, Zeisberg M. Fibroblasts in cancer[J]. Nat Rev Cancer, 2006, 6(5):392-401.
[4]
Andersen JB, Spee B, Blechacz BR, et al. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors[J]. Gastroenterology, 2012, 142(4): 1021-1031, e15.
[5]
Jacob M, Chang L, Puré E. Fibroblast activation protein in remodeling tissues[J]. Curr Mol Med, 2012, 12(10):1220-1243.
[6]
Lemoinne S, Thabut D, Housset C. Portal myofibroblasts connect angiogenesis and fibrosis in liver[J]. Cell Tissue Res, 2016, 365(3): 583-589.
[7]
Itou RA, Uyama N, Hirota S, et al. Immunohistochemical characterization of cancer-associated fibroblasts at the primary sites and in the metastatic lymph nodes of human intrahepatic cholangiocarcinoma[J]. Hum Pathol, 2019(83):77-89.
[8]
Cadamuro M, Nardo G, Indraccolo S, et al. Platelet-derived growth factor-D and Rho GTPases regulate recruitment of cancer-associated fibroblasts in cholangiocarcinoma[J]. Hepatology, 2013, 58(3):1042-1053.
[9]
Kalluri R. The biology and function of fibroblasts in cancer[J].Nat Rev Cancer, 2016, 16(9):582-598.
[10]
Weber CE, Kothari AN, Wai PY, et al. Osteopontin mediates an MZF1-TGF-beta1-dependent transformation of mesenchymal stem cells into cancer-associated fibroblasts in breast cancer[J]. Oncogene, 2015, 34(37):4821-4833.
[11]
Zheng L, Xu C, Guan Z, et al. Galectin-1 mediates TGF-β-induced transformation from normal fibroblasts into carcinoma-associated fibroblasts and promotes tumor progression in gastric cancer[J].Am J Transl Res, 2016, 8(4):1641-1658.
[12]
Shiga K, Hara M, Nagasaki T, et al. Cancer-associated fibroblasts: their characteristics and their roles in tumor growth[J]. Cancers, 2015, 7(4):2443-2458.
[13]
Dominguez C, David JM, Palena C. Epithelial-mesenchymal transition and inflammation at the site of the primary tumor[J]. Semin Cancer Biol, 2017(47):177-184.
[14]
Petrova V, Annicchiarico-Petruzzelli M, Melino G, et al. The hypoxic tumour microenvironment[J]. Oncogenesis, 2018, 7(1):10.
[15]
Clapéron A, Mergey M, Aoudjehane L, et al. Hepatic myofibroblasts promote the progression of human cholangiocarcinoma through activation of epidermal growth factor receptor[J]. Hepatology, 2013, 58(6):2001-2011.
[16]
Gentilini A, Rombouts K, Galastri S, et al. Role of the stromal-derived factor-1 (SDF-1)-CXCR4 axis in the interaction between hepatic stellate cells and cholangiocarcinoma[J]. J Hepatol, 2012, 57(4):813-820.
[17]
Vaquero J, Lobe C, Tahraoui S, et al. The IGF2/IR/IGF1R pathway in tumor cells and myofibroblasts mediates resistance to EGFR inhibition in cholangiocarcinoma[J]. Clin Cancer Res, 2018, 24(17): 4282-4296.
[18]
Sha M, Jeong S, Qiu BJ, et al. Isolation of cancer-associated fibroblasts and its promotion to the progression of intrahepatic cholangiocarcinoma[J]. Cancer Med, 2018, 7(9):4665-4677.
[19]
Okabe H, Beppu T, Hayashi H, et al. Hepatic stellate cells may relate to progression of intrahepatic cholangiocarcinoma[J]. Ann Surg Oncol, 2009, 16(9):2555-2564.
[20]
Thongchot S, Ferraresi A, Vidoni C, et al. Resveratrol interrupts the pro-invasive communication between cancer associated fibroblasts and cholangiocarcinoma cells[J]. Cancer Lett, 2018(430):160-171.
[21]
Techasen A, Loilome W, Namwat N, et al. Loss of E-cadherin promotes migration and invasion of cholangiocarcinoma cells and serves as a potential marker of metastasis[J]. Tumour Biol, 2014, 35(9):8645-8652.
[22]
Heits N, Heinze T, Bernsmeier A, et al. Influence of mTOR-inhibitors and mycophenolic acid on human cholangiocellular carcinoma and cancer associated fibroblasts[J]. BMC Cancer, 2016(16):322.
[23]
Cadamuro M, Brivio S, Mertens J, et al. Platelet-derived growth factor-D enables liver myofibroblasts to promote tumor lymphangiogenesis in cholangiocarcinoma[J]. J Hepatol, 2019, 70(4):700-709.
[24]
Stacker SA, Williams SP, Karnezis T, et al. Lymphangiogenesis and lymphatic vessel remodelling in cancer[J]. Nat Rev Cancer, 2014, 14(3):159-172.
[25]
Mertens JC, Fingas CD, Christensen JD, et al. Therapeutic effects of deleting cancer-associated fibroblasts in cholangiocarcinoma[J]. Cancer Res, 2013, 73(2):897-907.
[26]
Obulkasim H, Shi X, Wang J, et al. Podoplanin is an important stromal prognostic marker in perihilar cholangiocarcinoma[J]. Oncol Lett, 2018, 15(1):137-146.
[27]
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297.
[28]
Utaijaratrasmi P, Vaeteewoottacharn K, Tsunematsu T, et al. The microRNA-15a-PAI-2 axis in cholangiocarcinoma-associated fibroblasts promotes migration of cancer cells[J]. Mol Cancer, 2018, 17(1):10.
[29]
Kim CD, Sohn KC, Lee SS, et al. Plasminogen activator inhibitor-2 (PAI-2) secreted from activated mast cells induces α-smooth muscle actin (α-SMA) expression in dermal fibroblasts[J]. J Dermatol Sci, 2011, 62(3):204-206.
[30]
Ferraresi A, Phadngam S, Morani F, et al. Resveratrol inhibits IL-6-induced ovarian cancer cell migration through epigenetic up-regulation of autophagy[J]. Mol Carcinog, 2017, 56(3): 1164-1181.
[31]
Liu LZ, Yang LX, Zheng BH, et al. CK7/CK19 index: a potential prognostic factor for postoperative intrahepatic cholangiocarcinoma patients[J]. J Surg Oncol, 2018, 117(7): 1531-1539.
[32]
Subimerb C, Wongkham C, Khuntikeo N, et al. Transcriptional profiles of peripheral blood leukocytes identify patients with cholangiocarcinoma and predict outcome[J]. Asian Pac J Cancer Prev, 2014, 15(10): 4217-4224.
[1] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[2] 杨倩, 李翠芳, 张婉秋. 原发性肝癌自发性破裂出血急诊TACE术后的近远期预后及影响因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 33-36.
[3] 栗艳松, 冯会敏, 刘明超, 刘泽鹏, 姜秋霞. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 52-56.
[4] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[5] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[6] 邱朋, 邓正栋, 王剑明. 肝内胆管结石微创治疗策略[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 591-596.
[7] 杜锡林, 谭凯, 贺小军, 白亮亮, 赵瑶瑶. 肝细胞癌转化治疗方式[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 597-601.
[8] 李永胜, 孙家和, 郭书伟, 卢义康, 刘洪洲. 高龄结直肠癌患者根治术后短期并发症及其影响因素[J]. 中华临床医师杂志(电子版), 2023, 17(9): 962-967.
[9] 王军, 刘鲲鹏, 姚兰, 张华, 魏越, 索利斌, 陈骏, 苗成利, 罗成华. 腹膜后肿瘤切除术中大量输血患者的麻醉管理特点与分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 844-849.
[10] 陆志峰, 周佳佳, 梁舒. 虚拟现实技术在治疗弱视中的临床应用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 891-895.
[11] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[12] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
[13] 索利斌, 刘鲲鹏, 姚兰, 张华, 魏越, 王军, 陈骏, 苗成利, 罗成华. 原发性腹膜后副神经节瘤切除术麻醉管理的特点和分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 771-776.
[14] 李变, 王莉娜, 桑田, 李珊, 杜雪燕, 李春华, 张兴云, 管巧, 王颖, 冯琪, 蒙景雯. 亚低温技术治疗缺氧缺血性脑病新生儿的临床分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 639-643.
[15] 戴俊, 李硕, 曹影, 汪守峰, 宋红毛, 蔡菁菁, 邵敏, 陈莉, 程雷, 怀德. 鼻内镜下改良高选择性翼管神经低温等离子消融术对中重度变应性鼻炎的效果研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 689-693.
阅读次数
全文


摘要