切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2021, Vol. 10 ›› Issue (01) : 108 -110. doi: 10.3877/cma.j.issn.2095-3232.2021.01.023

所属专题: 文献

综述

坏死性凋亡在肝内胆管细胞癌和肝细胞癌分化过程中的作用
吴锡文1, 彭宝岗1, 沈顺利1,()   
  1. 1. 510080 广州,中山大学附属第一医院肝外科
  • 收稿日期:2020-10-30 出版日期:2021-02-10
  • 通信作者: 沈顺利
  • 基金资助:
    国家自然科学基金(81972587); 广东省自然科学基金(2018A030313529)

Role of necroptosis in cell differentiation of intrahepatic cholangiocarcinoma and hepatocellular carcinoma

Xiwen Wu1, Baogang Peng1, Shunli Shen1()   

  • Received:2020-10-30 Published:2021-02-10
  • Corresponding author: Shunli Shen
引用本文:

吴锡文, 彭宝岗, 沈顺利. 坏死性凋亡在肝内胆管细胞癌和肝细胞癌分化过程中的作用[J]. 中华肝脏外科手术学电子杂志, 2021, 10(01): 108-110.

Xiwen Wu, Baogang Peng, Shunli Shen. Role of necroptosis in cell differentiation of intrahepatic cholangiocarcinoma and hepatocellular carcinoma[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2021, 10(01): 108-110.

[1]
Sia D, Villanueva A, Friedman SL, et al. Liver cancer cell of origin, molecular class, and effects on patient prognosis[J]. Gastroenterology, 2017, 152(4):745-761.
[2]
Llovet JM, Zucman-Rossi J, Pikarsky E, et al. Hepatocellular carcinoma[J]. Nat Rev Dis Primers, 2016(2):16018.
[3]
Su CH, Lin Y, Cai L. Genetic factors, viral infection, other factors and liver cancer: an update on current progress[J]. Asian Pac J Cancer Prev, 2013, 14(9):4953-4960.
[4]
Degterev A, Huang Z, Boyce M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury[J]. Nat Chem Biol, 2005, 1(2):112-119.
[5]
Seehawer M, Heinzmann F, D'Artista L, et al. Necroptosis microenvironment directs lineage commitment in liver cancer[J]. Nature, 2018, 562(7725):69-75.
[6]
Vandenabeele P, Galluzzi L, Vanden Berghe T, et al. Molecular mechanisms of necroptosis: an ordered cellular explosion[J]. Nat Rev Mol Cell Biol, 2010, 11(10):700-714.
[7]
Najafov A, Chen H, Yuan J. Necroptosis and Cancer[J]. Trends Cancer, 2017, 3(4):294-301.
[8]
Vanlangenakker N, Vanden Berghe T, Bogaert P, et al. cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production[J]. Cell Death Differ, 2011, 18(4): 656-665.
[9]
Schwabe RF, Luedde T. Apoptosis and necroptosis in the liver: a matter of life and death[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(12):738-752.
[10]
Wang L, Du F, Wang X. TNF-alpha induces two distinct caspase-8 activation pathways[J]. Cell, 2008, 133(4):693-703.
[11]
Dondelinger Y, Jouan-Lanhouet S, Divert T, et al. NF-kappaB-independent role of IKKalpha/IKKbeta in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling[J]. Mol Cell, 2015, 60(1):63-76.
[12]
Vanden Berghe T, Vanlangenakker N, Parthoens E, et al. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features[J]. Cell Death Differ, 2010, 17(6): 922-930.
[13]
Han J, Zhong CQ, Zhang DW. Programmed necrosis: backup to and competitor with apoptosis in the immune system[J]. Nat Immunol, 2011, 12(12):1143-1149.
[14]
Simenc J, Lipnik-Stangelj M. Staurosporine induces different cell death forms in cultured rat astrocytes[J]. Radiol Oncol, 2012, 46(4): 312-320.
[15]
Chen X, Li W, Ren J, et al. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death[J]. Cell Res, 2014, 24(1):105-121.
[16]
Murphy JM, Czabotar PE, Hildebrand JM, et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism[J]. Immunity, 2013, 39(3):443-453.
[17]
Wang Z, Jiang H, Chen S, et al. The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways[J]. Cell, 2012, 148(1/2):228-243.
[18]
Ofengeim D, Yuan J. Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death[J]. Nat Rev Mol Cell Biol, 2013, 14(11):727-736.
[19]
Moriwaki K, Bertin J, Gough PJ, et al. Differential roles of RIPK1 and RIPK3 in TNF-induced necroptosis and chemotherapeutic agent-induced cell death[J]. Cell Death Dis, 2015, 6(2):e1636.
[20]
Liu P, Xu B, Shen W, et al. Dysregulation of TNFalpha-induced necroptotic signaling in chronic lymphocytic leukemia: suppression of CYLD gene by LEF1[J]. Leukemia, 2012, 26(6):1293-1300.
[21]
Bhattacharya S, Chalk AM, Ng AJM, et al. Increased miR-155-5p and reduced miR-148a-3p contribute to the suppression of osteosarcoma cell death[J]. Oncogene, 2016, 35(40):5282-5294.
[22]
Colbert LE, Fisher SB, Hardy CW, et al. Pronecrotic mixed lineage kinase domain-like protein expression is a prognostic biomarker in patients with early-stage resected pancreatic adenocarcinoma[J]. Cancer, 2013, 119(17):3148-3155.
[23]
He L, Peng K, Liu Y, et al. Low expression of mixed lineage kinase domain-like protein is associated with poor prognosis in ovarian cancer patients[J]. Onco Targets Ther, 2013(6):1539-1543.
[24]
Li X, Guo J, Ding AP, et al. Association of mixed lineage kinase domain-like protein expression with prognosis in patients with colon cancer[J]. Technol Cancer Res Treat, 2017, 16(4):428-434.
[25]
Fu Z, Deng B, Liao Y, et al. The anti-tumor effect of shikonin on osteosarcoma by inducing RIP1 and RIP3 dependent necroptosis[J]. BMC Cancer, 2013(13):580.
[26]
Philipp S, Sosna J, Adam D. Cancer and necroptosis: friend or foe?[J]. Cell Mol Life Sci, 2016, 73(11/12):2183-2193.
[27]
Yatim N, Jusforgues-Saklani H, Orozco S, et al. RIPK1 and NF-kappaB signaling in dying cells determines cross-priming of CD8(+) T cells[J]. Science, 2015, 350(6258):328-334.
[28]
Seifert L, Werba G, Tiwari S, et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression[J]. Nature, 2016, 532(7598):245-249.
[29]
Strilic B, Yang L, Albarrán-Juárez J, et al. Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis[J]. Nature, 2016, 536(7615):215-218.
[30]
Wu Y, Zhou BP. Inflammation: a driving force speeds cancer metastasis[J]. Cell Cycle, 2014, 8(20):3267-3273.
[31]
Liu ZY, Wu B, Guo YS, et al. Necrostatin-1 reduces intestinal inflammation and colitis-associated tumorigenesis in mice[J]. Am J Cancer Res, 2015, 5(10):3174-3185.
[32]
Liu XY, Lai F, Yan XG, et al. RIP1 kinase is an oncogenic driver in melanoma[J]. Cancer Res, 2015, 75(8):1736-1748.
[1] 韩丹, 王婷, 肖欢, 朱丽容, 陈镜宇, 唐毅. 超声造影与增强CT对儿童肝脏良恶性病变诊断价值的对比分析[J]. 中华医学超声杂志(电子版), 2023, 20(09): 939-944.
[2] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[3] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[4] 李建美, 邓静娟, 杨倩. 两种术式联合治疗肝癌合并肝硬化门静脉高压的安全性及随访评价[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 41-44.
[5] 陈忠垚, 陈胜灯, 李秋. 不同手术时机对原发性肝癌自发破裂出血患者远期预后的影响[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 518-521.
[6] 唐灿, 李向阳, 秦浩然, 李婧, 王天云, 柯阳, 朱红. 原发性肝脏神经内分泌肿瘤单中心12例诊治与疗效分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 674-680.
[7] 崔佳琪, 吴迪, 陈海艳, 周惠敏, 顾元龙, 周光文, 杨军. TACE术后并发肝脓肿的临床诊治分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 688-693.
[8] 杜锡林, 谭凯, 贺小军, 白亮亮, 赵瑶瑶. 肝细胞癌转化治疗方式[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 597-601.
[9] 韩冰, 顾劲扬. 深度学习神经网络在肝癌诊疗中的研究及应用前景[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 480-485.
[10] 何传超, 肖治宇. 晚期肝癌综合治疗模式与策略[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 486-489.
[11] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[12] 顾娇娇, 邹燕, 陈奕辰, 黄师菊, 张慧玲, 林楠. 基于简易营养评价精法评估肝癌患者出院后营养状况及其影响因素[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 534-539.
[13] 孟令展, 李虎, 俞鹏, 于燕宾, 曹李, 翟伟, 高远, 邵艳玲, 严锦, 朱震宇. ICG荧光染色在肝癌腹腔镜解剖性肝切除术中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 557-561.
[14] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要