切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2021, Vol. 10 ›› Issue (01) : 108 -110. doi: 10.3877/cma.j.issn.2095-3232.2021.01.023

所属专题: 文献

综述

坏死性凋亡在肝内胆管细胞癌和肝细胞癌分化过程中的作用
吴锡文1, 彭宝岗1, 沈顺利1,()   
  1. 1. 510080 广州,中山大学附属第一医院肝外科
  • 收稿日期:2020-10-30 出版日期:2021-02-10
  • 通信作者: 沈顺利
  • 基金资助:
    国家自然科学基金(81972587); 广东省自然科学基金(2018A030313529)

Role of necroptosis in cell differentiation of intrahepatic cholangiocarcinoma and hepatocellular carcinoma

Xiwen Wu1, Baogang Peng1, Shunli Shen1()   

  • Received:2020-10-30 Published:2021-02-10
  • Corresponding author: Shunli Shen
引用本文:

吴锡文, 彭宝岗, 沈顺利. 坏死性凋亡在肝内胆管细胞癌和肝细胞癌分化过程中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2021, 10(01): 108-110.

Xiwen Wu, Baogang Peng, Shunli Shen. Role of necroptosis in cell differentiation of intrahepatic cholangiocarcinoma and hepatocellular carcinoma[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2021, 10(01): 108-110.

[1]
Sia D, Villanueva A, Friedman SL, et al. Liver cancer cell of origin, molecular class, and effects on patient prognosis[J]. Gastroenterology, 2017, 152(4):745-761.
[2]
Llovet JM, Zucman-Rossi J, Pikarsky E, et al. Hepatocellular carcinoma[J]. Nat Rev Dis Primers, 2016(2):16018.
[3]
Su CH, Lin Y, Cai L. Genetic factors, viral infection, other factors and liver cancer: an update on current progress[J]. Asian Pac J Cancer Prev, 2013, 14(9):4953-4960.
[4]
Degterev A, Huang Z, Boyce M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury[J]. Nat Chem Biol, 2005, 1(2):112-119.
[5]
Seehawer M, Heinzmann F, D'Artista L, et al. Necroptosis microenvironment directs lineage commitment in liver cancer[J]. Nature, 2018, 562(7725):69-75.
[6]
Vandenabeele P, Galluzzi L, Vanden Berghe T, et al. Molecular mechanisms of necroptosis: an ordered cellular explosion[J]. Nat Rev Mol Cell Biol, 2010, 11(10):700-714.
[7]
Najafov A, Chen H, Yuan J. Necroptosis and Cancer[J]. Trends Cancer, 2017, 3(4):294-301.
[8]
Vanlangenakker N, Vanden Berghe T, Bogaert P, et al. cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production[J]. Cell Death Differ, 2011, 18(4): 656-665.
[9]
Schwabe RF, Luedde T. Apoptosis and necroptosis in the liver: a matter of life and death[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(12):738-752.
[10]
Wang L, Du F, Wang X. TNF-alpha induces two distinct caspase-8 activation pathways[J]. Cell, 2008, 133(4):693-703.
[11]
Dondelinger Y, Jouan-Lanhouet S, Divert T, et al. NF-kappaB-independent role of IKKalpha/IKKbeta in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling[J]. Mol Cell, 2015, 60(1):63-76.
[12]
Vanden Berghe T, Vanlangenakker N, Parthoens E, et al. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features[J]. Cell Death Differ, 2010, 17(6): 922-930.
[13]
Han J, Zhong CQ, Zhang DW. Programmed necrosis: backup to and competitor with apoptosis in the immune system[J]. Nat Immunol, 2011, 12(12):1143-1149.
[14]
Simenc J, Lipnik-Stangelj M. Staurosporine induces different cell death forms in cultured rat astrocytes[J]. Radiol Oncol, 2012, 46(4): 312-320.
[15]
Chen X, Li W, Ren J, et al. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death[J]. Cell Res, 2014, 24(1):105-121.
[16]
Murphy JM, Czabotar PE, Hildebrand JM, et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism[J]. Immunity, 2013, 39(3):443-453.
[17]
Wang Z, Jiang H, Chen S, et al. The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways[J]. Cell, 2012, 148(1/2):228-243.
[18]
Ofengeim D, Yuan J. Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death[J]. Nat Rev Mol Cell Biol, 2013, 14(11):727-736.
[19]
Moriwaki K, Bertin J, Gough PJ, et al. Differential roles of RIPK1 and RIPK3 in TNF-induced necroptosis and chemotherapeutic agent-induced cell death[J]. Cell Death Dis, 2015, 6(2):e1636.
[20]
Liu P, Xu B, Shen W, et al. Dysregulation of TNFalpha-induced necroptotic signaling in chronic lymphocytic leukemia: suppression of CYLD gene by LEF1[J]. Leukemia, 2012, 26(6):1293-1300.
[21]
Bhattacharya S, Chalk AM, Ng AJM, et al. Increased miR-155-5p and reduced miR-148a-3p contribute to the suppression of osteosarcoma cell death[J]. Oncogene, 2016, 35(40):5282-5294.
[22]
Colbert LE, Fisher SB, Hardy CW, et al. Pronecrotic mixed lineage kinase domain-like protein expression is a prognostic biomarker in patients with early-stage resected pancreatic adenocarcinoma[J]. Cancer, 2013, 119(17):3148-3155.
[23]
He L, Peng K, Liu Y, et al. Low expression of mixed lineage kinase domain-like protein is associated with poor prognosis in ovarian cancer patients[J]. Onco Targets Ther, 2013(6):1539-1543.
[24]
Li X, Guo J, Ding AP, et al. Association of mixed lineage kinase domain-like protein expression with prognosis in patients with colon cancer[J]. Technol Cancer Res Treat, 2017, 16(4):428-434.
[25]
Fu Z, Deng B, Liao Y, et al. The anti-tumor effect of shikonin on osteosarcoma by inducing RIP1 and RIP3 dependent necroptosis[J]. BMC Cancer, 2013(13):580.
[26]
Philipp S, Sosna J, Adam D. Cancer and necroptosis: friend or foe?[J]. Cell Mol Life Sci, 2016, 73(11/12):2183-2193.
[27]
Yatim N, Jusforgues-Saklani H, Orozco S, et al. RIPK1 and NF-kappaB signaling in dying cells determines cross-priming of CD8(+) T cells[J]. Science, 2015, 350(6258):328-334.
[28]
Seifert L, Werba G, Tiwari S, et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression[J]. Nature, 2016, 532(7598):245-249.
[29]
Strilic B, Yang L, Albarrán-Juárez J, et al. Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis[J]. Nature, 2016, 536(7615):215-218.
[30]
Wu Y, Zhou BP. Inflammation: a driving force speeds cancer metastasis[J]. Cell Cycle, 2014, 8(20):3267-3273.
[31]
Liu ZY, Wu B, Guo YS, et al. Necrostatin-1 reduces intestinal inflammation and colitis-associated tumorigenesis in mice[J]. Am J Cancer Res, 2015, 5(10):3174-3185.
[32]
Liu XY, Lai F, Yan XG, et al. RIP1 kinase is an oncogenic driver in melanoma[J]. Cancer Res, 2015, 75(8):1736-1748.
[1] 钟雅雯, 王煜, 王海臻, 黄莉萍. 肌苷通过抑制线粒体通透性转换孔开放缓解缺氧/复氧诱导的人绒毛膜滋养层细胞凋亡[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 525-533.
[2] 高俊颖, 张海洲, 区泓乐, 孙强. FOLFOX-HAIC 为基础的肝细胞癌辅助转化治疗的应用进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(06): 457-463.
[3] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[4] 赖全友, 高远, 汪建林, 屈士斌, 魏丹, 彭伟. 三维重建技术结合腹腔镜精准肝切除术对肝癌患者术后CD4+、CD8+及免疫球蛋白水平的影响[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 651-654.
[5] 郑俊, 吴杰英, 谭海波, 郑安全, 李腾成. EGFR-MEK-TZ三联合分子的构建及其对去势抵抗性前列腺癌细胞增殖与凋亡的影响[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 503-508.
[6] 任江波, 李丽, 王萍. 阻断PI3K/Akt信号通路促进低表达FoxA2肝脏前体细胞对分化诱导剂应答并朝肝细胞方向分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 336-343.
[7] 黄程鑫, 陈莉, 刘伊楚, 王水良, 赖晓凤. OPA1 在乳腺癌组织的表达特征及在ER阳性乳腺癌细胞中的生物学功能研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 275-284.
[8] 季加翠, 孙春斌, 罗恩丽. 姜黄素通过调节NF-κB/NLRP3通路减轻LPS诱导小胶质细胞神经炎症损伤[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 193-203.
[9] 李一帆, 朱帝文, 任伟新, 鲍应军, 顾俊鹏, 张海潇, 曹耿飞, 阿斯哈尔·哈斯木, 纪卫政. 血GP73水平在原发性肝癌TACE疗效评价中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 825-830.
[10] 陆镜明, 韩大为, 任耀星, 黄天笑, 向俊西, 张谞丰, 吕毅, 王傅民. 基于术前影像组学的肝内胆管细胞癌淋巴结转移预测的系统性分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 852-858.
[11] 吴雪云, 胡小军, 范应方. 肝切除术中剩余肝再生能力的评估与预测[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 894-897.
[12] 林小勇, 张兰霞, 曾庆劲, 贺需旗, 谭雷, 郭光辉, 龙颖琳, 李凯, 吴宇轩. 负压抽吸活检针在肝困难病灶活检中的初步应用研究[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 694-698.
[13] 雷永琪, 刘新阳, 杨黎渝, 铁学宏, 俞星新, 耿志达, 刘雨, 陈政良, 惠鹏, 梁英健. 肝脏血管周上皮样细胞肿瘤合并贫血一例并文献复习[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 710-718.
[14] 欧阳佳裕, 李刚, 贺露瑶, 罗娜. 双层探测器光谱CT在早期原发性肝癌中的诊断价值[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 557-561.
[15] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?