切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2021, Vol. 10 ›› Issue (02) : 215 -219. doi: 10.3877/cma.j.issn.2095-3232.2021.02.020

所属专题: 文献

基础研究

基于mRNA高通量测序的胆囊癌发病机制生物信息学研究
徐畅1, 王敬晗2, 程庆保2, 刘辰2, 胡明泰1, 罗祥基1, 姜小清2,()   
  1. 1. 200438 上海,海军军医大学附属东方肝胆外科医院胆道三科
    2. 200438 上海,海军军医大学附属东方肝胆外科医院胆道一科
  • 收稿日期:2021-01-07 出版日期:2021-04-10
  • 通信作者: 姜小清

Bioinformatics study of pathogenesis of gallbladder cancer base on high-throughput mRNA sequencing

Chang Xu1, Jinghan Wang2, Qingbao Cheng2, Chen Liu2, Mingtai Hu1, Xiangji Luo1, Xiaoqing Jiang2,()   

  1. 1. Department III of Biliary Tract Diseases, Shanghai Eastern Hepatobiliary Surgery Hospital Affiliated to Second Military Medical University, Shanghai 200438, China
    2. Department Ⅰ of Biliary Tract Diseases, Shanghai Eastern Hepatobiliary Surgery Hospital Affiliated to Second Military Medical University, Shanghai 200438, China
  • Received:2021-01-07 Published:2021-04-10
  • Corresponding author: Xiaoqing Jiang
引用本文:

徐畅, 王敬晗, 程庆保, 刘辰, 胡明泰, 罗祥基, 姜小清. 基于mRNA高通量测序的胆囊癌发病机制生物信息学研究[J]. 中华肝脏外科手术学电子杂志, 2021, 10(02): 215-219.

Chang Xu, Jinghan Wang, Qingbao Cheng, Chen Liu, Mingtai Hu, Xiangji Luo, Xiaoqing Jiang. Bioinformatics study of pathogenesis of gallbladder cancer base on high-throughput mRNA sequencing[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2021, 10(02): 215-219.

目的

基于mRNA高通量测序和生物信息学分析探讨胆囊癌发病机制。

方法

本研究选取2017年1月至2018年10月在上海东方肝胆外科医院就诊的10例胆囊癌患者。对其胆囊癌组织及癌旁正常组织进行mRNA高通量测序,并进行生物信息学分析。

结果

肿瘤组织与对应的癌旁正常组织相比,共鉴定出1 704个差异表达基因(DEGs),其中523个DEGs上调,1 181个DEGs下调。其中有674个DEGs显著富集到46个信号通路,包括PI3K-Akt、MAPK、Ras、Wnt等癌症相关信号通路,以及细胞运动相关通路,其中最显著的途径是神经活性配体- 受体相互作用信号途径,45个基因显著富集到钙信号通路。

结论

基于高通量mRNA测序和生物信息学技术分析显示胆囊癌和癌旁正常组织存在DEGs, 神经活性的配体- 受体相互作用信号通路改变最为显著,钙信号传导途径异常揭示了慢性结石性胆囊炎向胆囊癌转变的重要信号通路。

Objective

To explore the pathogenesis of gallbladder carcinoma base on high-throughput mRNA sequencing and bioinformatics analysis.

Methods

10 patients with gallbladder carcinoma admitted to Shanghai Eastern Hepatobiliary Surgery Hospital from January 2017 to October 2018 were recruited in this study. High-throughput mRNA sequencing and bioinformatics analysis were performed on the gallbladder carcinoma and paracancerous normal tissues.

Results

1 704 differentially-expressed genes (DEGs) were identified from tumor tissues and adjacent normal tissues, including 523 DEGs were up-regulated and 1 181 DEGs were down-regulated. Among them, 674 DEGs were significantly enriched on 46 signaling pathways, including PI3K-Akt, MAPK, Ras, Wnt and other cancer-related signaling pathways as well as cell movement-related signaling pathways, among which the most significant pathway was neuroactive ligand-receptor interaction signaling pathway, and 45 DEGs were significantly enriched on the calcium signaling pathway.

Conclusions

High-throughput mRNA sequencing and bioinformatics analysis demonstrate that DEGs exist in gallbladder cancer and adjacent normal tissues. The most significant changes are noted on the neuroactive ligand-receptor interaction signaling pathway. Abnormal calcium signaling pathway is noted as a critical signaling pathway for progression from chronic calculous cholecystitis to gallbladder cancer.

图1 十例胆囊癌患者胆囊癌和癌旁组织差异表达基因火山图
表1 十例胆囊癌组织和癌旁正常组织的差异表达基因
图2 胆囊癌患者样本中差异表达基因的无监督分层聚类热图
图3 胆囊癌患者样本中差异表达基因KEGG富集分析
[1]
Lazcano-Ponce EC, Miquel JF, Muñoz N, et al. Epidemiology and molecular pathology of gallbladder carcinoma[J]. CA Cancer J Clin, 2001, 51(6):349-364.
[2]
Boutros C, Gary M, Baldwin K, et al. Gallbladder carcinoma: past, present and an uncertain future[J]. Surg Oncol, 2012, 21(4):e183-191.
[3]
Zhu AX, Hong TS, Hezel AF, et al. Current management of gallbladder carcinoma[J]. Oncologist, 2010, 15(2):168-181.
[4]
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2):115-132.
[5]
Levy AD, Murakata LA, Rohrmann CA. Gallbladder carcinoma: radiologic-pathologic correlation[J]. Radiographics, 2001, 21(2): 295-314.
[6]
Hundal R, Shaffer EA. Gallbladder carcinoma: epidemiology and outcome[J]. Clin Epidemiol, 2014(6):99-109.
[7]
Li Y, Zhang J, Ma H. Chronic inflammation and gallbladder carcinoma[J]. Cancer Lett, 2014, 345(2):242-248.
[8]
Ferkingstad E, Oddsson A, Gretarsdottir S, et al. Genome-wide association meta-analysis yields 20 loci associated with gallstone disease[J]. Nat Commun, 2018, 9(1):5101.
[9]
Goldin RD, Roa JC. Gallbladder carcinoma: a morphological andmolecular update[J]. Histopathology, 2009, 55(2):218-229.
[10]
Agrawal V, Goel A, Krishnani N, et al. P53, carcinoembryonic antigen and carbohydrate antigen 19.9 expression in gallbladder cancer, precursor epithelial lesions and xanthogranulomatous cholecystitis[J]. J Postgrad Med, 2010(56):262-266.
[11]
Wistuba II, Gazdar AF. Gallbladder carcinoma: lessons from a rare tumour[J]. Nat Rev Cancer, 2004, 4(9):695-706.
[12]
Li M, Zhang Z, Li X, et al. Whole-exome and targeted gene sequencing of gallbladder carcinoma identifies recurrent mutations in the ErbB pathway[J]. Nat Genet, 2014, 46(8):872-876.
[13]
Gu X, Li B, Jiang M, et al. RNA sequencing reveals differentially expressed genes as potential diagnostic and prognostic indicators of gallbladder carcinoma[J]. Oncotarget, 2015(6):20661-20671.
[14]
Ryu S, Chang Y, Yun K, et al. Gallstones and the risk of gallbladder carcinoma mortality: a cohort study[J]. Am J Gastroenterol, 2016(111):1476-1487.
[15]
Sharma RK, Sonkar K, Sinha N, et al. Gallstones: a worldwide multifaceted disease and its correlations with gallbladder carcinoma[J]. PLoS One, 2016, 11(11):e0166351.
[16]
Kong Y, Liang X, Liu L, et al. High throughput sequencing identifies microRNAs mediatingα-synuclein toxicity by targeting neuroactive-ligand receptor interaction pathway in early stage of Drosophila Parkinson's disease model[J]. PLoS One, 2015(10):e0137432.
[17]
Lammert F, Gurusamy K, Ko CW, et al. Gallstones[J]. Nat Rev Dis Primers, 2016(2):16024.
[18]
Yang B, Liu B, Bi P, et al. An integrated analysis of differential miRNA and mRNA expressions in human gallstones[J]. Mol Biosyst, 2015, 11(4):1004-1011.
[19]
Mishra SK, Kumari N, Krishnani N. Molecular pathogenesis of gallbladder carcinoma: an update[J]. Mutat Res, 2019:816-818.
[20]
Zuo M, Rashid A, Wang Y, et al. RNA sequencing-based analysis of gallbladder carcinoma reveals the importance of the liver X receptor and lipid metabolism in gallbladder cancer[J]. Oncotarget, 2016, 7(23):35302-35312.
[1] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[2] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[3] 贺敬龙, 孙炜, 高明宏, 谢伟, 姜骆永, 何琦非, 岳家吉. 外泌体非编码RNA在骨关节炎发病机制中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 520-527.
[4] 罗晨, 宗开灿, 李世颖, 傅应亚. 微小RNA-199a-3p调控CD4T细胞表达参与肺炎支原体肺炎患儿免疫反应研究[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 569-574.
[5] 周东杰, 蒋敏, 范海瑞, 高玲玲, 孔祥, 卢丹, 王丽萍. 非编码RNA在卵泡发育成熟中作用及其机制的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 387-393.
[6] 闫甲, 刘双池, 王政宇. 胆囊癌肿瘤标志物的研究和应用进展[J]. 中华普通外科学文献(电子版), 2023, 17(05): 391-394.
[7] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[8] 顾志波, 郝林, 陆明, 陈建刚. 光动力纳米载体联合si-P3H4治疗膀胱癌的初步探索[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 633-641.
[9] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[10] 范博洋, 王宁, 张骞, 王贵玉. 结直肠癌转移调控的环状RNA分子机制研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 426-430.
[11] 孙昕, 程海波, 沈卫星. 基于全转录组学探讨仙连解毒方治疗Ⅲ期结直肠癌患者的疗效机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 277-283.
[12] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[13] 张冠男, 吴开丘, 曹佩佩, 陈智凌, 周晓君, 牛莉娜. 海南省一例足部皮肤感染海藻施万菌的鉴定分析[J]. 中华临床医师杂志(电子版), 2023, 17(04): 424-430.
[14] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要