切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2021, Vol. 10 ›› Issue (02) : 220 -223. doi: 10.3877/cma.j.issn.2095-3232.2021.02.021

所属专题: 文献

综述

肝内胆管细胞癌肿瘤免疫微环境及免疫治疗
丁光宇1, 高强1,()   
  1. 1. 200032 上海,复旦大学附属中山医院肝外科 复旦大学肝癌研究所
  • 收稿日期:2021-01-15 出版日期:2021-04-10
  • 通信作者: 高强
  • 基金资助:
    国家自然科学基金(91859105); 上海市曙光计划项目(17SG03); 上海市优秀学科带头人计划项目(2017BR002)

Immune microenvironment and immunotherapy of intrahepatic cholangiocarcinoma

Guangyu Ding1, Qiang Gao1()   

  • Received:2021-01-15 Published:2021-04-10
  • Corresponding author: Qiang Gao
引用本文:

丁光宇, 高强. 肝内胆管细胞癌肿瘤免疫微环境及免疫治疗[J/OL]. 中华肝脏外科手术学电子杂志, 2021, 10(02): 220-223.

Guangyu Ding, Qiang Gao. Immune microenvironment and immunotherapy of intrahepatic cholangiocarcinoma[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2021, 10(02): 220-223.

[1]
Razumilava N, Gores GJ. Cholangiocarcinoma[J]. Lancet, 2014, 383(9935):2168-2179.
[2]
Zhou J, Sun HC, Wang Z, et al. Guidelines for diagnosis and treatment of primary liver cancer in China (2017 edition)[J]. Liver cancer, 2018, 7(3):235-260.
[3]
Barkal AA, Brewer RE, Markovic M, et al. CD24 signalling through macrophage siglec-10 is a target for cancer immunotherapy[J]. Nature, 2019, 572(7769):392-396.
[4]
Wu Q, Zhou W, Yin S, et al. Blocking triggering receptor expressed on myeloid cells-1-positive tumor-associated macrophages induced by hypoxia reverses immunosuppression and anti-programmed cell death ligand 1 resistance in liver cancer[J]. Hepatology, 2019, 70(1):198-214.
[5]
Netea-Maier RT, Smit JWA, Netea MG. Metabolic changes in tumor cells and tumor-associated macrophages: a mutual relationship[J]. Cancer Lett, 2018(413):102-109.
[6]
Zhang Q, He Y, Luo N, et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma[J]. Cell, 2019, 179(4): 829-845, e20.
[7]
Rodell CB, Arlauckas SP, Cuccarese MF, et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy[J]. Nat Biomed Eng, 2018, 2(8):578-588.
[8]
Klichinsky M, Ruella M, Shestova O, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy[J]. Nat Biotechnol, 2020, DOI:10.1038/s41587-020-0462-y[Epub ahead of print].
[9]
Zhou SL, Dai Z, Zhou ZJ, et al. CXCL5 contributes to tumor metastasis and recurrence of intrahepatic cholangiocarcinoma by recruiting infiltrative intratumoral neutrophils[J]. Carcinogenesis, 2014, 35(3):597-605.
[10]
Takeshima T, Pop LM, Laine A, et al. Key role for neutrophils in radiation-induced antitumor immune responses: potentiation with G-CSF[J]. Proc Natl Acad Sci U S A, 2016, 113(40):11300-11305.
[11]
Bronte V, Brandau S, Chen SH, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards[J]. Nat Commun, 2016(7):12150.
[12]
Marvel D, Gabrilovich DI. Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected[J]. J Clin Invest, 2015, 125(9):3356-3364.
[13]
Weber R, Fleming V, Hu X, et al. Myeloid-derived suppressor cells hinder the anti-cancer activity of immune checkpoint inhibitors[J]. Front Immunol, 2018(9):1310.
[14]
Liu LZ, Zhang Z, Zheng BH, et al. CCL15 recruits suppressive monocytes to facilitate immune escape and disease progression in hepatocellular carcinoma[J]. Hepatology, 2019, 69(1):143-159.
[15]
Xu XD, Hu J, Wang M, et al. Circulating myeloid-derived suppressor cells in patients with pancreatic cancer[J]. Hepatobiliary Pancreat Dis Int, 2016, 15(1):99-105.
[16]
Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age[J]. Nat Immunol, 2018, 19(2):108-119.
[17]
Zhou J, Liu M, Sun H, et al. Hepatoma-intrinsic CCRK inhibition diminishes myeloid-derived suppressor cell immunosuppression and enhances immune-checkpoint blockade efficacy[J]. Gut, 2018, 67(5):931-944.
[18]
Satpathy AT, Wu X, Albring JC, et al. Re(de)fining the dendritic cell lineage[J]. Nat Immunol, 2012, 13(12):1145-1154.
[19]
Veglia F, Gabrilovich DI. Dendritic cells in cancer: the role revisited[J]. Curr Opin Immunol, 2017(45):43-51.
[20]
Takagi S, Miyagawa S, Ichikawa E, et al. Dendritic cells, T-cell infiltration, and Grp94 expression in cholangiocellular carcinoma[J]. Hum Pathol, 2004, 35(7):881-886.
[21]
Sprooten J, Ceusters J, Coosemans A, et al. Trial watch: dendritic cell vaccination for cancer immunotherapy[J]. Oncoimmunology, 2019, 8(11):e1638212.
[22]
Noda T, Shimoda M, Ortiz V, et al. Immunization with aspartate-beta-hydroxylase-loaded dendritic cells produces antitumor effects ina rat model of intrahepatic cholangiocarcinoma[J]. Hepatology, 2012, 55(1):86-97.
[23]
Chiossone L, Dumas PY, Vienne M, et al. Natural killer cells and other innate lymphoid cells in cancer[J]. Nat Rev Immunol, 2018, 18(11):671-688.
[24]
Galon J, Bruni D. Tumor immunology and tumor evolution: intertwined histories[J]. Immunity, 2020, 52(1):55-81.
[25]
Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies[J]. Nat Rev Drug Discov, 2019, 18(3):197-218.
[26]
Zheng BH, Ma JQ, Tian LY, et al. The distribution of immune cells within combined hepatocellular carcinoma and cholangiocarcinoma predicts clinical outcome[J]. Clin Transl Med, 2020, 10(1):45-56.
[27]
Ma L, Hernandez MO, Zhao Y, et al. Tumor cell biodiversity drives microenvironmental reprogramming in liver cancer[J]. Cancer Cell, 2019, 36(4):418-430, e6.
[28]
Zhou G, Sprengers D, Mancham S, et al. Reduction of immunosuppressive tumor microenvironment in cholangiocarcinoma by ex vivo targeting immune checkpoint molecules[J]. J Hepatol, 2019, 71(4):753-762.
[29]
Petitprez F, de Reyniès A, Keung EZ, et al. B cells are associated with survival and immunotherapy response in sarcoma[J]. Nature, 2020, 577(7791):556-560.
[30]
Helmink BA, Reddy SM, Gao J, et al. B cells and tertiary lymphoid structures promote immunotherapy response[J]. Nature, 2020, 577(7791):549-555.
[31]
Calderaro J, Petitprez F, Becht E, et al. Intra-tumoral tertiary lymphoid structures are associated with a low risk of early recurrence of hepatocellular carcinoma[J]. J Hepatol, 2019, 70(1):58-65.
[32]
Finkin S, Yuan D, Stein I, et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma[J]. Nat Immunol, 2015, 16(12):1235-1244.
[33]
Job S, Rapoud D, Dos Santos A, et al. Identification of four immune subtypes characterized by distinct composition and functions of tumor microenvironment in intrahepatic cholangiocarcinoma[J]. Hepatology, 2019, DOI: 10.1002/hep.31092[Epub ahead of print].
[34]
Jusakul A, Cutcutache I, Yong CH, et al. Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma[J]. Cancer Discov, 2017, 7(10):1116-1135.
[35]
Nakamura H, Arai Y, Totoki Y, et al. Genomic spectra of biliary tract cancer[J]. Nat Genet, 2015, 47(9):1003-1010.
[36]
Ott PA, Bang YJ, Piha-Paul SA, et al. T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028[J]. J Clin Oncol, 2019, 37(4):318-327.
[1] 徐楠, 杨云川, 周迟, 马翔, 鲁正, 崔培元. 脾动脉结扎在肝门胆管癌行大范围肝切除中的临床作用研究[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 271-274.
[2] 梁孟杰, 朱欢欢, 王行舟, 江航, 艾世超, 孙锋, 宋鹏, 王萌, 刘颂, 夏雪峰, 杜峻峰, 傅双, 陆晓峰, 沈晓菲, 管文贤. 联合免疫治疗的胃癌转化治疗患者预后及术后并发症分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 619-623.
[3] 张志兆, 王睿, 郜苹苹, 王成方, 王成, 齐晓伟. DNMT3B与乳腺癌预后的关系及其生物学机制[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 624-629.
[4] 林逸, 钟文龙, 李锴文, 何旺, 林天歆. 广东省医学会泌尿外科疑难病例多学科会诊(第15期)——转移性膀胱癌的综合治疗[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 648-652.
[5] 吴伟宙, 王琼仁, 詹雄宇, 郑明星, 李亚县. 广东省医学会泌尿外科疑难病例多学科会诊(第16期)——左肾肉瘤样癌[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 525-529.
[6] 李勇, 彭天明, 王倩倩, 陈育纯, 蒲小勇, 刘久敏. 基于失巢凋亡相关基因的膀胱癌预后模型构建及分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 331-339.
[7] 李飞, 郑灶松, 吴芃, 谭万龙. 广东省医学会泌尿外科疑难病例多学科会诊(第16期)——延胡索酸水合酶缺陷型晚期肾细胞癌[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 410-414.
[8] 黄兴, 王蕾, 夏丹. 靶向免疫治疗时代下减瘤性肾切除术在转移性肾细胞癌治疗中的价值[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 208-213.
[9] 邓永豪, 曹嘉正. 长链非编码RNA与肾癌的关系及其在肾癌中的临床应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 289-293.
[10] 陈伟杰, 何小东. 胆囊癌免疫靶向治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 763-768.
[11] 张润锦, 阳盼, 林燕斯, 刘尊龙, 刘建平, 金小岩. EB病毒相关胆管癌伴多发转移一例及国内文献复习[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 865-869.
[12] 魏妙艳, 徐近. 合并远处转移胰腺癌系统性治疗的梳理和展望[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 644-650.
[13] 朱军, 宋家伟, 乔一桓, 郭雅婕, 刘帅, 姜玉, 李纪鹏. M2型巨噬细胞特征基因与结肠癌免疫微环境研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 303-311.
[14] 王昌前, 林婷婷, 宁雨露, 王颖杰, 谭文勇. 光免疫治疗在肿瘤领域的临床应用新进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 575-583.
[15] 吴迪, 闫志风, 李明霞, 孟元光. 晚期子宫内膜癌免疫治疗的探索[J/OL]. 中华临床医师杂志(电子版), 2024, 18(03): 231-237.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?