切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2021, Vol. 10 ›› Issue (02) : 220 -223. doi: 10.3877/cma.j.issn.2095-3232.2021.02.021

所属专题: 文献

综述

肝内胆管细胞癌肿瘤免疫微环境及免疫治疗
丁光宇1, 高强1,()   
  1. 1. 200032 上海,复旦大学附属中山医院肝外科 复旦大学肝癌研究所
  • 收稿日期:2021-01-15 出版日期:2021-04-10
  • 通信作者: 高强
  • 基金资助:
    国家自然科学基金(91859105); 上海市曙光计划项目(17SG03); 上海市优秀学科带头人计划项目(2017BR002)

Immune microenvironment and immunotherapy of intrahepatic cholangiocarcinoma

Guangyu Ding1, Qiang Gao1()   

  • Received:2021-01-15 Published:2021-04-10
  • Corresponding author: Qiang Gao
引用本文:

丁光宇, 高强. 肝内胆管细胞癌肿瘤免疫微环境及免疫治疗[J]. 中华肝脏外科手术学电子杂志, 2021, 10(02): 220-223.

Guangyu Ding, Qiang Gao. Immune microenvironment and immunotherapy of intrahepatic cholangiocarcinoma[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2021, 10(02): 220-223.

[1]
Razumilava N, Gores GJ. Cholangiocarcinoma[J]. Lancet, 2014, 383(9935):2168-2179.
[2]
Zhou J, Sun HC, Wang Z, et al. Guidelines for diagnosis and treatment of primary liver cancer in China (2017 edition)[J]. Liver cancer, 2018, 7(3):235-260.
[3]
Barkal AA, Brewer RE, Markovic M, et al. CD24 signalling through macrophage siglec-10 is a target for cancer immunotherapy[J]. Nature, 2019, 572(7769):392-396.
[4]
Wu Q, Zhou W, Yin S, et al. Blocking triggering receptor expressed on myeloid cells-1-positive tumor-associated macrophages induced by hypoxia reverses immunosuppression and anti-programmed cell death ligand 1 resistance in liver cancer[J]. Hepatology, 2019, 70(1):198-214.
[5]
Netea-Maier RT, Smit JWA, Netea MG. Metabolic changes in tumor cells and tumor-associated macrophages: a mutual relationship[J]. Cancer Lett, 2018(413):102-109.
[6]
Zhang Q, He Y, Luo N, et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma[J]. Cell, 2019, 179(4): 829-845, e20.
[7]
Rodell CB, Arlauckas SP, Cuccarese MF, et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy[J]. Nat Biomed Eng, 2018, 2(8):578-588.
[8]
Klichinsky M, Ruella M, Shestova O, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy[J]. Nat Biotechnol, 2020, DOI:10.1038/s41587-020-0462-y[Epub ahead of print].
[9]
Zhou SL, Dai Z, Zhou ZJ, et al. CXCL5 contributes to tumor metastasis and recurrence of intrahepatic cholangiocarcinoma by recruiting infiltrative intratumoral neutrophils[J]. Carcinogenesis, 2014, 35(3):597-605.
[10]
Takeshima T, Pop LM, Laine A, et al. Key role for neutrophils in radiation-induced antitumor immune responses: potentiation with G-CSF[J]. Proc Natl Acad Sci U S A, 2016, 113(40):11300-11305.
[11]
Bronte V, Brandau S, Chen SH, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards[J]. Nat Commun, 2016(7):12150.
[12]
Marvel D, Gabrilovich DI. Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected[J]. J Clin Invest, 2015, 125(9):3356-3364.
[13]
Weber R, Fleming V, Hu X, et al. Myeloid-derived suppressor cells hinder the anti-cancer activity of immune checkpoint inhibitors[J]. Front Immunol, 2018(9):1310.
[14]
Liu LZ, Zhang Z, Zheng BH, et al. CCL15 recruits suppressive monocytes to facilitate immune escape and disease progression in hepatocellular carcinoma[J]. Hepatology, 2019, 69(1):143-159.
[15]
Xu XD, Hu J, Wang M, et al. Circulating myeloid-derived suppressor cells in patients with pancreatic cancer[J]. Hepatobiliary Pancreat Dis Int, 2016, 15(1):99-105.
[16]
Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age[J]. Nat Immunol, 2018, 19(2):108-119.
[17]
Zhou J, Liu M, Sun H, et al. Hepatoma-intrinsic CCRK inhibition diminishes myeloid-derived suppressor cell immunosuppression and enhances immune-checkpoint blockade efficacy[J]. Gut, 2018, 67(5):931-944.
[18]
Satpathy AT, Wu X, Albring JC, et al. Re(de)fining the dendritic cell lineage[J]. Nat Immunol, 2012, 13(12):1145-1154.
[19]
Veglia F, Gabrilovich DI. Dendritic cells in cancer: the role revisited[J]. Curr Opin Immunol, 2017(45):43-51.
[20]
Takagi S, Miyagawa S, Ichikawa E, et al. Dendritic cells, T-cell infiltration, and Grp94 expression in cholangiocellular carcinoma[J]. Hum Pathol, 2004, 35(7):881-886.
[21]
Sprooten J, Ceusters J, Coosemans A, et al. Trial watch: dendritic cell vaccination for cancer immunotherapy[J]. Oncoimmunology, 2019, 8(11):e1638212.
[22]
Noda T, Shimoda M, Ortiz V, et al. Immunization with aspartate-beta-hydroxylase-loaded dendritic cells produces antitumor effects ina rat model of intrahepatic cholangiocarcinoma[J]. Hepatology, 2012, 55(1):86-97.
[23]
Chiossone L, Dumas PY, Vienne M, et al. Natural killer cells and other innate lymphoid cells in cancer[J]. Nat Rev Immunol, 2018, 18(11):671-688.
[24]
Galon J, Bruni D. Tumor immunology and tumor evolution: intertwined histories[J]. Immunity, 2020, 52(1):55-81.
[25]
Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies[J]. Nat Rev Drug Discov, 2019, 18(3):197-218.
[26]
Zheng BH, Ma JQ, Tian LY, et al. The distribution of immune cells within combined hepatocellular carcinoma and cholangiocarcinoma predicts clinical outcome[J]. Clin Transl Med, 2020, 10(1):45-56.
[27]
Ma L, Hernandez MO, Zhao Y, et al. Tumor cell biodiversity drives microenvironmental reprogramming in liver cancer[J]. Cancer Cell, 2019, 36(4):418-430, e6.
[28]
Zhou G, Sprengers D, Mancham S, et al. Reduction of immunosuppressive tumor microenvironment in cholangiocarcinoma by ex vivo targeting immune checkpoint molecules[J]. J Hepatol, 2019, 71(4):753-762.
[29]
Petitprez F, de Reyniès A, Keung EZ, et al. B cells are associated with survival and immunotherapy response in sarcoma[J]. Nature, 2020, 577(7791):556-560.
[30]
Helmink BA, Reddy SM, Gao J, et al. B cells and tertiary lymphoid structures promote immunotherapy response[J]. Nature, 2020, 577(7791):549-555.
[31]
Calderaro J, Petitprez F, Becht E, et al. Intra-tumoral tertiary lymphoid structures are associated with a low risk of early recurrence of hepatocellular carcinoma[J]. J Hepatol, 2019, 70(1):58-65.
[32]
Finkin S, Yuan D, Stein I, et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma[J]. Nat Immunol, 2015, 16(12):1235-1244.
[33]
Job S, Rapoud D, Dos Santos A, et al. Identification of four immune subtypes characterized by distinct composition and functions of tumor microenvironment in intrahepatic cholangiocarcinoma[J]. Hepatology, 2019, DOI: 10.1002/hep.31092[Epub ahead of print].
[34]
Jusakul A, Cutcutache I, Yong CH, et al. Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma[J]. Cancer Discov, 2017, 7(10):1116-1135.
[35]
Nakamura H, Arai Y, Totoki Y, et al. Genomic spectra of biliary tract cancer[J]. Nat Genet, 2015, 47(9):1003-1010.
[36]
Ott PA, Bang YJ, Piha-Paul SA, et al. T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028[J]. J Clin Oncol, 2019, 37(4):318-327.
[1] 李晨曦, 谭小容, 魏巍, 李慕秋, 龚忠诚. 三级淋巴结构在口腔癌中的特征及意义[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 315-321.
[2] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[3] 薛永婷, 高峰, 王雅楠, 屈莲平. 溶瘤病毒治疗在结直肠癌中的应用[J]. 中华普通外科学文献(电子版), 2023, 17(05): 380-384.
[4] 闫甲, 刘双池, 王政宇. 胆囊癌肿瘤标志物的研究和应用进展[J]. 中华普通外科学文献(电子版), 2023, 17(05): 391-394.
[5] 陈坤, 何傅梅, 方婷, 陈文瑞. 血清sCD73与EGFR/ALK野生型非小细胞肺癌免疫治疗效果的相关性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 504-507.
[6] 魏小勇. 原发性肝癌转化治疗焦点问题探讨[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 602-607.
[7] 潘冰, 吕少诚, 赵昕, 李立新, 郎韧, 贺强. 淋巴结清扫数目对远端胆管癌胰十二指肠切除手术疗效的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 608-612.
[8] 李斌奎. 不可切除肝内胆管细胞癌的转化治疗[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 511-516.
[9] 田驹, 孙伯洋, 杨荣华, 赵向前. 术中意外发现肝外胆管绒毛管状腺瘤的外科处理经验:附两例报道并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 567-571.
[10] 吴周宇, 周宝勇, 李明. 基于PSM分析腹腔镜肝门部胆管癌根治术安全性[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 384-388.
[11] 陈润芝, 杨东梅, 徐慧婷. 信迪利单抗联合索凡替尼后线治疗MSS型BRAF突变的转移性结肠癌:个案报道并文献复习[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 431-435.
[12] 胡宝茹, 尚乃舰, 高迪. 中晚期肝细胞癌的DCE-MRI及DWI表现与免疫治疗预后的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 399-403.
[13] 杨镠, 秦岚群, 耿茜, 李栋庆, 戚春建, 蒋华. 可溶性免疫检查点对胃癌患者免疫治疗疗效和预后的预测价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 305-311.
[14] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
[15] 张琪悦, 王晓东. IL-8与肿瘤免疫的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 605-613.
阅读次数
全文


摘要