[1] |
中华人民共和国国家卫生健康委员会医政医管局. 原发性肝癌诊疗指南(2022年版)[J]. 中华消化外科杂志, 2022, 21(2):143-168.
|
[2] |
Vogel A, Cervantes A, Chau I, et al. Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2018, 29(Suppl 4):iv238-255.
|
[3] |
Chan HP, Samala RK, Hadjiiski LM, et al. Deep learning in medical image analysis[J]. Adv Exp Med Biol, 2020(1213):3-21.
|
[4] |
Huo Y, Terry JG, Wang J, et al. Fully automatic liver attenuation estimation combing CNN segmentation and morphological operations[J]. Med Phys, 2019, 46(8):3508-3519.
|
[5] |
Ioannou GN, Tang W, Beste LA, et al. Assessment of a deep learning model to predict hepatocellular carcinoma in patients withhepatitis C cirrhosis[J]. JAMA Netw Open, 2020, 3(9):e2015626.
|
[6] |
Husain SS, Bober M. REMAP: multi-layer entropy-guided pooling of dense CNN features for image retrieval[J]. IEEE Trans Image Process, 2019, DOI: 10.1109/TIP.2019.2917234[Epub ahead of print].
|
[7] |
申铉京, 沈哲, 黄永平, 等. 基于非局部操作的深度卷积神经网络车位占用检测算法[J]. 电子与信息学报, 2020, 42(9):2269-2276.
|
[8] |
Sahli H, Ben Slama A, Labidi S. U-Net: a valuable encoder-decoder architecture for liver tumors segmentation in CT images[J]. J Xray Sci Technol, 2022, 30(1):45-56.
|
[9] |
Choi HH, Rodgers SK, Khurana A, et al. Role of ultrasound for chronic liver disease and hepatocellular carcinoma surveillance[J]. Magn Reson Imaging Clin N Am, 2021, 29(3):279-290.
|
[10] |
Jiang HY, Chen J, Xia CC, et al. Noninvasive imaging of hepatocellular carcinoma: from diagnosis to prognosis[J]. World J Gastroenterol, 2018, 24(22):2348-2362.
|
[11] |
Schmauch B, Herent P, Jehanno P, et al. Diagnosis of focal liver lesions from ultrasound using deep learning[J]. Diagn Interv Imaging, 2019, 100(4):227-233.
|
[12] |
Nishida N, Yamakawa M, Shiina T, et al. Current status and perspectives for computer-aided ultrasonic diagnosis of liver lesions using deep learning technology[J]. Hepatol Int, 2019, 13(4):416-421.
|
[13] |
Anwar SM, Majid M, Qayyum A, et al. Medical image analysis using convolutional neural networks: a review[J]. J Med Syst, 2018, 42(11):226.
|
[14] |
姜涛, 林仲志, 吴水才, 等. 基于卷积神经网络和超像素的CT图像肝脏分割[J]. 中国医疗设备, 2020, 35(2):72-76.
|
[15] |
许文哲, 邢国靖, 王延珍, 等. CT增强与超声造影在肝癌诊断中的应用价值[J]. 影像研究与医学应用, 2019, 3(4):44-45.
|
[16] |
Căleanu CD, Sîrbu CL, Simion G. Deep neural architectures for contrast enhanced ultrasound (CEUS) focal liver lesions automated diagnosis[J]. Sensors, 2021, 21(12):4126.
|
[17] |
Guo LH, Wang D, Qian YY, et al. A two-stage multi-view learning framework based computer-aided diagnosis of liver tumors with contrast enhanced ultrasound images[J]. Clin Hemorheol Microcirc, 2018, 69(3):343-354.
|
[18] |
Yasaka K, Akai H, Abe O, et al. Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study[J]. Radiology, 2018, 286(3):887-896.
|
[19] |
Patel L, Shukla T, Huang X, et al. Machine learning methods in drug discovery[J]. Molecules, 2020, 25(22):5277.
|
[20] |
Seo H, Huang C, Bassenne M, et al. Modified U-Net (mU-Net) with incorporation of object-dependent high level features for improved liver and liver-tumor segmentation in CT images[J]. IEEE Trans Med Imaging, 2020, 39(5):1316-1325.
|
[21] |
Lin S, Ji R, Li Y, et al. Toward compact ConvNets via structure-sparsity regularized filter pruning[J]. IEEE Trans Neural Netw Learn Syst, 2020, 31(2):574-588.
|
[22] |
Li X, Chen H, Qi X, et al. H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes[J]. IEEE Trans Med Imaging, 2018, 37(12):2663-2674.
|
[23] |
Hui H, Zhang X, Wu Z, et al. Dual-path attention compensation U-Net for stroke lesion segmentation[J]. Comput Intell Neurosci, 2021: 7552185.
|
[24] |
Nayantara PV, Kamath S, Manjunath KN, et al. Computer-aided diagnosis of liver lesions using CT images: a systematic review[J]. Comput Biol Med, 2020(127): 104035.
|
[25] |
Lee JG, Jun S, Cho YW, et al. Deep learning in medical imaging: general overview[J]. Korean J Radiol, 2017, 18(4):570-584.
|
[26] |
Erstad DJ, Tanabe KK. Prognostic and therapeutic implications of microvascular invasion in hepatocellular carcinoma[J]. Ann Surg Oncol, 2019, 26(5):1474-1493.
|
[27] |
Lee S, Kang TW, Song KD, et al. Effect of microvascular invasion risk on early recurrence of hepatocellular carcinoma after surgery and radiofrequency ablation[J]. Ann Surg, 2021, 273(3):564-571.
|
[28] |
张清华,李海涛,方国旭,等.深度学习在原发性肝癌相关诊断模型中的应用与前景[J].临床肝胆病杂志, 2022, 38(1):20-25.
|
[29] |
漆振东. 基于增强CT深度学习模型及影像学特征术前预测单发肝细胞癌微血管侵犯的初步研究[D]. 广州: 南方医科大学, 2019.
|
[30] |
Saillard C, Schmauch B, Laifa O, et al. Predicting survival after hepatocellular carcinoma resection using deep learning on histological slides[J]. Hepatology, 2020, 72(6):2000-2013.
|
[31] |
Spieler B, Sabottke C, Moawad AW, et al. Artificial intelligence in assessment of hepatocellular carcinoma treatment response[J]. Abdom Radiol, 2021, 46(8):3660-3671.
|
[32] |
Peng J, Kang S, Ning Z, et al. Residual convolutional neural network for predicting response of transarterial chemoembolization in hepatocellular carcinoma from CT imaging[J]. Eur Radiol, 2020, 30(1):413-424.
|