切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2023, Vol. 12 ›› Issue (01): 1 -5. doi: 10.3877/cma.j.issn.2095-3232.2023.01.001

述评

大数据和人工智能在原发性肝癌筛查与诊断中的应用
刘红枝1, 刘景丰2,()   
  1. 1. 350025 福州,福建医科大学孟超肝胆医院东南肝胆健康大数据研究所
    2. 350025 福州,福建医科大学孟超肝胆医院东南肝胆健康大数据研究所;350014 福州,福建省肿瘤医院肝胆外科
  • 收稿日期:2022-11-03 出版日期:2023-02-10
  • 通信作者: 刘景丰
  • 基金资助:
    福建省发展和改革委员会专项基金(31010308); 福州市科技局科技创新平台项目(2021-P-055); 福州市重点专科项目(201912002)

Application of big data and artificial intelligence in screening and diagnosis of primary liver cancer

Hongzhi Liu1, Jingfeng Liu2()   

  • Received:2022-11-03 Published:2023-02-10
  • Corresponding author: Jingfeng Liu

原发性肝癌(肝癌)是世界范围内常见的恶性肿瘤。GLOBOCAN 2020统计数据显示,肝癌年新发病例数居恶性肿瘤第6位,年致死病例数居恶性肿瘤第3位[1]。手术治疗是肝癌根治性治疗的重要手段,但其术后复发率高,5年生存率仅19.6%[2]。近年来,随着医疗数字化、信息化、智能化的不断发展,围绕肝癌诊断、治疗和科研产生了海量的健康医疗数据,包括电子病历系统、影像检查系统、手术视频库、病理图像库、生物信息学资料等数据共同构成涵盖多元数据资源的肝癌临床与科研大数据。构建肝癌大数据平台并将人工智能等先进技术应用于临床场景是提升肝癌诊断和治疗水平、改善患者远期预后的重要手段。近年来国内外学者利用大数据与人工智能在肝癌筛查及诊断方面开展了探索与实践,取得了丰富成果。本研究对肝癌大数据与人工智能在肝癌筛查及诊断中的应用现状作一阐述。

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249.
[2]
Zhang B, Zhang B, Zhang Z, et al. 42,573 cases of hepatectomy in China: a multicenter retrospective investigation[J]. Sci China Life Sci, 2018, 61(6):660-670.
[3]
European Association for the Study of the Liver. EASL clinical practice guidelines: management of hepatocellular carcinoma[J].J Hepatol, 2018, 69(1):182-236.
[4]
Omata M, Cheng AL, Kokudo N, et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update[J]. Hepatol Int, 2017, 11(4):317-370.
[5]
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2):115-132.
[6]
中华人民共和国国家卫生健康委员会医政医管局. 原发性肝癌诊疗指南(2022年版)[J]. 中华消化外科杂志, 2022, 21(2):143-168.
[7]
Tiyarattanachai T, Apiparakoon T, Marukatat S, et al. Development and validation of artificial intelligence to detect and diagnose liver lesions from ultrasound images[J]. PLoS One, 2021, 16(6): e0252882.
[8]
Marya NB, Powers PD, Fujii-Lau L, et al. Application of artificial intelligence using a novel EUS-based convolutional neural network model to identify and distinguish benign and malignant hepatic masses[J]. Gastrointest Endosc, 2021, 93(5):1121-1130, e1.
[9]
Fan R, Papatheodoridis G, Sun J, et al. aMAP risk score predicts hepatocellular carcinoma development in patients with chronic hepatitis[J]. J Hepatol, 2020, 73(6):1368-1378.
[10]
Ioannou GN, Tang W, Beste LA, et al. Assessment of a deep learning model to predict hepatocellular carcinoma in patients with hepatitis C cirrhosis[J]. JAMA Netw Open, 2020, 3(9):e2015626.
[11]
刘景丰, 刘红枝, 陈振伟, 等. 肝病和肝癌大数据平台建设体系及其初步应用[J]. 中华消化外科杂志, 2021, 20(1):46-51.
[12]
Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography[J]. Nat Med, 2019, 25(6):954-961.
[13]
Misawa M, Kudo SE, Mori Y, et al. Artificial intelligence-assisted polyp detection for colonoscopy: initial experience[J]. Gastroenterology, 2018, 154(8):2027-2029, e3.
[14]
Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: clinical challenges and applications[J]. CA Cancer J Clin, 2019, 69(2):127-157.
[15]
Zhou J, Wang W, Lei B, et al. Automatic detection and classification of focal liver lesions based on deep convolutional neural networks: a preliminary study[J]. Front Oncol, 2021(10): 581210.
[16]
Hamm CA, Wang CJ, Savic LJ, et al. Deep learning for liver tumor diagnosis partⅠ: development of a convolutional neural network classifier for multi-phasic MRI[J]. Eur Radiol, 2019, 29(7):3338-3347.
[17]
Wu Y, White GM, Cornelius T, et al. Deep learning LI-RADS grading system based on contrast enhanced multiphase MRI for differentiation between LR-3 and LR-4/LR-5 liver tumors[J]. Ann Transl Med, 2020, 8(11):701.
[18]
Kondo S, Takagi K, Nishida M, et al. Computer-aided diagnosis of focal liver lesions using contrast-enhanced ultrasonography with perflubutane microbubbles[J]. IEEE Trans Med Imaging, 2017, 36(7):1427-1437.
[19]
Le Berre C, Sandborn WJ, Aridhi S, et al. Application of artificial intelligence to gastroenterology and hepatology[J]. Gastroenterology, 2020, 158(1):76-94, e2.
[20]
Wang CJ, Hamm CA, Savic LJ, et al. Deep learning for liver tumor diagnosis partⅡ: convolutional neural network interpretation using radiologic imaging features[J]. Eur Radiol, 2019, 29(7):3348-3357.
[21]
Robertson S, Azizpour H, Smith K, et al. Digital image analysis in breast pathology-from image processing techniques to artificial intelligence[J]. Transl Res, 2018(194):19-35.
[22]
William W, Ware A, Basaza-Ejiri AH, et al. A review of image analysis and machine learning techniques for automated cervical cancer screening from pap-smear images[J]. Comput Methods Programs Biomed, 2018(164):15-22.
[23]
Sharma H, Zerbe N, Klempert I, et al. Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology[J]. Comput Med Imaging Graph, 2017(61):2-13.
[24]
Ayyad SM, Shehata M, Shalaby A, et al. Role of AI and histopathological images in detecting prostate cancer: a survey[J]. Sensors, 2021, 21(8):2586.
[25]
Wang X, Fang Y, Yang S, et al. A hybrid network for automatic hepatocellular carcinoma segmentation in H&E-stained whole slide images[J]. Med Image Anal, 2021(68):101914.
[26]
Roy M, Kong J, Kashyap S, et al. Convolutional autoencoder based model HistoCAE for segmentation of viable tumor regions in liver whole-slide images[J]. Sci Rep, 2021, 11(1):139.
[27]
Liao H, Long Y, Han R, et al. Deep learning-based classification and mutation prediction from histopathological images of hepatocellular carcinoma[J]. Clin Transl Med, 2020, 10(2):e102.
[28]
Kiani A, Uyumazturk B, Rajpurkar P, et al. Impact of a deep learning assistant on the histopathologic classification of liver cancer[J]. NPJ Digit Med, 2020(3):23.
[29]
Chen W, Zhang T, Xu L, et al. Radiomics analysis of contrast-enhanced CT for hepatocellular carcinoma grading[J]. Front Oncol, 2021(11):660509.
[30]
Zhou W, Wang G, Xie G, et al. Grading of hepatocellular carcinoma based on diffusion weighted images with multiple b-values using convolutional neural networks[J]. Med Phys, 2019, 46(9):3951-3960.
[31]
Wang K, Lu X, Zhou H, et al. Deep learning Radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study[J]. Gut, 2019, 68(4):729-741.
[32]
Gu D, Xie Y, Wei J, et al. MRI-based radiomics signature: a potential biomarker for identifying glypican 3-positive hepatocellular carcinoma[J]. J Magn Reson Imaging, 2020, 52(6):1679-1687.
[33]
Wang W, Gu D, Wei J, et al. A radiomics-based biomarker for cytokeratin 19 status of hepatocellular carcinoma with gadoxetic acid-enhanced MRI[J]. Eur Radiol, 2020, 30(5):3004-3014.
[34]
刘红枝, 林海涛, 林昭旺, 等. 机器学习算法在肝细胞癌微血管侵犯术前预测中的应用价值[J]. 中华消化外科杂志, 2020, 19(2):156-165.
[35]
Chen G, Wang R, Zhang C, et al. Integration of pre-surgical blood test results predict microvascular invasion risk in hepatocellular carcinoma[J]. Comput Struct Biotechnol J, 2021(19):826-834.
[36]
Jiang YQ, Cao SE, Cao S, et al. Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning[J]. J Cancer Res Clin Oncol, 2021, 147(3):821-833.
[37]
Zhou W, Jian W, Cen X, et al. Prediction of microvascular invasion of hepatocellular carcinoma based on contrast-enhanced MR and 3D convolutional neural networks[J]. Front Oncol, 2021(11):588010.
[38]
Chen S, Feng S, Wei J, et al. Pretreatment prediction of immunoscore in hepatocellular cancer: a radiomics-based clinical model based on Gd-EOB-DTPA-enhanced MRI imaging[J]. Eur Radiol, 2019, 29(8):4177-4187.
[1] 任芸芸. 无创产前诊断时代早孕期超声检查的价值[J]. 中华医学超声杂志(电子版), 2022, 19(09): 873-876.
[2] 曾晴, 文华轩, 袁鹰, 丁妍, 罗丹丹, 廖伊梅, 梁美玲, 秦越, 彭桂艳, 林毅, 邹于, 李胜利. 二维横切面新方法对胎儿胼胝体结构异常的诊断价值[J]. 中华医学超声杂志(电子版), 2022, 19(09): 899-907.
[3] 吕淑懿, 张燕, 章美武, 范晓翔, 高立博, 李飞. 人工智能自动检测系统对不同经验医师诊断乳腺小肿块的辅助作用[J]. 中华医学超声杂志(电子版), 2022, 19(09): 983-989.
[4] 杜婷婷, 付颖, 曾兰, 崔立刚, 黄九平, 薛恒. 常规超声及超声造影对局灶性胸膜增厚病变的鉴别诊断价值[J]. 中华医学超声杂志(电子版), 2022, 19(08): 748-753.
[5] 付颖, 崔立刚, 杜婷婷, 谭石, 王淑敏, 孙彦, 马久祎. 常规超声及超声造影鉴别诊断局灶性机化性肺炎与非特异性肺炎的初步研究[J]. 中华医学超声杂志(电子版), 2022, 19(08): 754-760.
[6] 付泽辉, 卢叶君, 张剑, 莫晓民, 贺烨, 张晓青, 陶楚楚, 陈卉. 常规超声特征联合内部粗大钙化特征鉴别甲状腺结节良恶性的价值[J]. 中华医学超声杂志(电子版), 2022, 19(08): 767-773.
[7] 王瑛, 陈英格, 叶素敏, 陈东, 刘宇, 刘再毅, 刘敏. 超声影像组学标签对乳腺癌腋窝淋巴结转移的预测价值[J]. 中华医学超声杂志(电子版), 2022, 19(08): 774-778.
[8] 谭莹, 文华轩, 彭桂艳, 罗丹丹, 温昕, 江瑶, 黄文兰, 李胜利. 在线产科超声图像智能质量控制系统的临床应用价值[J]. 中华医学超声杂志(电子版), 2022, 19(07): 649-655.
[9] 李盈盈, 李欣洋, 阎琳, 肖静, 张明博, 罗渝昆. S-detect技术辅助住院医师诊断甲状腺影像报告和数据系统4类≤1 cm甲状腺结节的应用价值[J]. 中华医学超声杂志(电子版), 2022, 19(07): 682-687.
[10] 武玺宁, 张培培, 欧阳云淑, 张一休, 姜玉新, 李建初, 孟华. 基于标准切面培训的教学法在住院医师产前超声病例诊断中的应用[J]. 中华医学超声杂志(电子版), 2022, 19(07): 712-715.
[11] 杨星飞, 张鹏, 李兰军, 马光辉, 胡培良, 杜同海, 孙振卿. 两种不同取栓方法在肝细胞癌伴胆管癌栓中的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(01): 36-39.
[12] 黄兴锋, 宋浩, 高凌. 肝恶性纤维组织细胞瘤32例手术体会[J]. 中华普外科手术学杂志(电子版), 2023, 17(01): 114-116.
[13] 秦国强, 卢旭, 张朝枫, 罗欣, 李杰贤, 邹戈, 江福能. 超声造影经直肠前列腺靶向穿刺活检术在PSA 4~10 ng/ml患者中的作用[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(01): 36-38.
[14] 牛逸凡, 马晓娟. 经静脉超声造影在剖宫产瘢痕部位妊娠诊断及鉴别诊断中的应用进展[J]. 中华临床医师杂志(电子版), 2022, 16(08): 801-804.
[15] 蒋亦林, 伍刚, 刘波, 沈洁, 刘如恩. 继发性三叉神经痛诊疗策略[J]. 中华临床医师杂志(电子版), 2022, 16(07): 643-646.
阅读次数
全文


摘要