切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2023, Vol. 12 ›› Issue (01) : 1 -5. doi: 10.3877/cma.j.issn.2095-3232.2023.01.001

所属专题: 述评 综述

述评

大数据和人工智能在原发性肝癌筛查与诊断中的应用
刘红枝1, 刘景丰2,()   
  1. 1. 350025 福州,福建医科大学孟超肝胆医院东南肝胆健康大数据研究所
    2. 350025 福州,福建医科大学孟超肝胆医院东南肝胆健康大数据研究所;350014 福州,福建省肿瘤医院肝胆外科
  • 收稿日期:2022-11-03 出版日期:2023-02-10
  • 通信作者: 刘景丰
  • 基金资助:
    福建省发展和改革委员会专项基金(31010308); 福州市科技局科技创新平台项目(2021-P-055); 福州市重点专科项目(201912002)

Application of big data and artificial intelligence in screening and diagnosis of primary liver cancer

Hongzhi Liu1, Jingfeng Liu2()   

  • Received:2022-11-03 Published:2023-02-10
  • Corresponding author: Jingfeng Liu
引用本文:

刘红枝, 刘景丰. 大数据和人工智能在原发性肝癌筛查与诊断中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2023, 12(01): 1-5.

Hongzhi Liu, Jingfeng Liu. Application of big data and artificial intelligence in screening and diagnosis of primary liver cancer[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2023, 12(01): 1-5.

原发性肝癌(肝癌)是世界范围内常见的恶性肿瘤。GLOBOCAN 2020统计数据显示,肝癌年新发病例数居恶性肿瘤第6位,年致死病例数居恶性肿瘤第3位[1]。手术治疗是肝癌根治性治疗的重要手段,但其术后复发率高,5年生存率仅19.6%[2]。近年来,随着医疗数字化、信息化、智能化的不断发展,围绕肝癌诊断、治疗和科研产生了海量的健康医疗数据,包括电子病历系统、影像检查系统、手术视频库、病理图像库、生物信息学资料等数据共同构成涵盖多元数据资源的肝癌临床与科研大数据。构建肝癌大数据平台并将人工智能等先进技术应用于临床场景是提升肝癌诊断和治疗水平、改善患者远期预后的重要手段。近年来国内外学者利用大数据与人工智能在肝癌筛查及诊断方面开展了探索与实践,取得了丰富成果。本研究对肝癌大数据与人工智能在肝癌筛查及诊断中的应用现状作一阐述。

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249.
[2]
Zhang B, Zhang B, Zhang Z, et al. 42,573 cases of hepatectomy in China: a multicenter retrospective investigation[J]. Sci China Life Sci, 2018, 61(6):660-670.
[3]
European Association for the Study of the Liver. EASL clinical practice guidelines: management of hepatocellular carcinoma[J].J Hepatol, 2018, 69(1):182-236.
[4]
Omata M, Cheng AL, Kokudo N, et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update[J]. Hepatol Int, 2017, 11(4):317-370.
[5]
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2):115-132.
[6]
中华人民共和国国家卫生健康委员会医政医管局. 原发性肝癌诊疗指南(2022年版)[J]. 中华消化外科杂志, 2022, 21(2):143-168.
[7]
Tiyarattanachai T, Apiparakoon T, Marukatat S, et al. Development and validation of artificial intelligence to detect and diagnose liver lesions from ultrasound images[J]. PLoS One, 2021, 16(6): e0252882.
[8]
Marya NB, Powers PD, Fujii-Lau L, et al. Application of artificial intelligence using a novel EUS-based convolutional neural network model to identify and distinguish benign and malignant hepatic masses[J]. Gastrointest Endosc, 2021, 93(5):1121-1130, e1.
[9]
Fan R, Papatheodoridis G, Sun J, et al. aMAP risk score predicts hepatocellular carcinoma development in patients with chronic hepatitis[J]. J Hepatol, 2020, 73(6):1368-1378.
[10]
Ioannou GN, Tang W, Beste LA, et al. Assessment of a deep learning model to predict hepatocellular carcinoma in patients with hepatitis C cirrhosis[J]. JAMA Netw Open, 2020, 3(9):e2015626.
[11]
刘景丰, 刘红枝, 陈振伟, 等. 肝病和肝癌大数据平台建设体系及其初步应用[J]. 中华消化外科杂志, 2021, 20(1):46-51.
[12]
Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography[J]. Nat Med, 2019, 25(6):954-961.
[13]
Misawa M, Kudo SE, Mori Y, et al. Artificial intelligence-assisted polyp detection for colonoscopy: initial experience[J]. Gastroenterology, 2018, 154(8):2027-2029, e3.
[14]
Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: clinical challenges and applications[J]. CA Cancer J Clin, 2019, 69(2):127-157.
[15]
Zhou J, Wang W, Lei B, et al. Automatic detection and classification of focal liver lesions based on deep convolutional neural networks: a preliminary study[J]. Front Oncol, 2021(10): 581210.
[16]
Hamm CA, Wang CJ, Savic LJ, et al. Deep learning for liver tumor diagnosis partⅠ: development of a convolutional neural network classifier for multi-phasic MRI[J]. Eur Radiol, 2019, 29(7):3338-3347.
[17]
Wu Y, White GM, Cornelius T, et al. Deep learning LI-RADS grading system based on contrast enhanced multiphase MRI for differentiation between LR-3 and LR-4/LR-5 liver tumors[J]. Ann Transl Med, 2020, 8(11):701.
[18]
Kondo S, Takagi K, Nishida M, et al. Computer-aided diagnosis of focal liver lesions using contrast-enhanced ultrasonography with perflubutane microbubbles[J]. IEEE Trans Med Imaging, 2017, 36(7):1427-1437.
[19]
Le Berre C, Sandborn WJ, Aridhi S, et al. Application of artificial intelligence to gastroenterology and hepatology[J]. Gastroenterology, 2020, 158(1):76-94, e2.
[20]
Wang CJ, Hamm CA, Savic LJ, et al. Deep learning for liver tumor diagnosis partⅡ: convolutional neural network interpretation using radiologic imaging features[J]. Eur Radiol, 2019, 29(7):3348-3357.
[21]
Robertson S, Azizpour H, Smith K, et al. Digital image analysis in breast pathology-from image processing techniques to artificial intelligence[J]. Transl Res, 2018(194):19-35.
[22]
William W, Ware A, Basaza-Ejiri AH, et al. A review of image analysis and machine learning techniques for automated cervical cancer screening from pap-smear images[J]. Comput Methods Programs Biomed, 2018(164):15-22.
[23]
Sharma H, Zerbe N, Klempert I, et al. Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology[J]. Comput Med Imaging Graph, 2017(61):2-13.
[24]
Ayyad SM, Shehata M, Shalaby A, et al. Role of AI and histopathological images in detecting prostate cancer: a survey[J]. Sensors, 2021, 21(8):2586.
[25]
Wang X, Fang Y, Yang S, et al. A hybrid network for automatic hepatocellular carcinoma segmentation in H&E-stained whole slide images[J]. Med Image Anal, 2021(68):101914.
[26]
Roy M, Kong J, Kashyap S, et al. Convolutional autoencoder based model HistoCAE for segmentation of viable tumor regions in liver whole-slide images[J]. Sci Rep, 2021, 11(1):139.
[27]
Liao H, Long Y, Han R, et al. Deep learning-based classification and mutation prediction from histopathological images of hepatocellular carcinoma[J]. Clin Transl Med, 2020, 10(2):e102.
[28]
Kiani A, Uyumazturk B, Rajpurkar P, et al. Impact of a deep learning assistant on the histopathologic classification of liver cancer[J]. NPJ Digit Med, 2020(3):23.
[29]
Chen W, Zhang T, Xu L, et al. Radiomics analysis of contrast-enhanced CT for hepatocellular carcinoma grading[J]. Front Oncol, 2021(11):660509.
[30]
Zhou W, Wang G, Xie G, et al. Grading of hepatocellular carcinoma based on diffusion weighted images with multiple b-values using convolutional neural networks[J]. Med Phys, 2019, 46(9):3951-3960.
[31]
Wang K, Lu X, Zhou H, et al. Deep learning Radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study[J]. Gut, 2019, 68(4):729-741.
[32]
Gu D, Xie Y, Wei J, et al. MRI-based radiomics signature: a potential biomarker for identifying glypican 3-positive hepatocellular carcinoma[J]. J Magn Reson Imaging, 2020, 52(6):1679-1687.
[33]
Wang W, Gu D, Wei J, et al. A radiomics-based biomarker for cytokeratin 19 status of hepatocellular carcinoma with gadoxetic acid-enhanced MRI[J]. Eur Radiol, 2020, 30(5):3004-3014.
[34]
刘红枝, 林海涛, 林昭旺, 等. 机器学习算法在肝细胞癌微血管侵犯术前预测中的应用价值[J]. 中华消化外科杂志, 2020, 19(2):156-165.
[35]
Chen G, Wang R, Zhang C, et al. Integration of pre-surgical blood test results predict microvascular invasion risk in hepatocellular carcinoma[J]. Comput Struct Biotechnol J, 2021(19):826-834.
[36]
Jiang YQ, Cao SE, Cao S, et al. Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning[J]. J Cancer Res Clin Oncol, 2021, 147(3):821-833.
[37]
Zhou W, Jian W, Cen X, et al. Prediction of microvascular invasion of hepatocellular carcinoma based on contrast-enhanced MR and 3D convolutional neural networks[J]. Front Oncol, 2021(11):588010.
[38]
Chen S, Feng S, Wei J, et al. Pretreatment prediction of immunoscore in hepatocellular cancer: a radiomics-based clinical model based on Gd-EOB-DTPA-enhanced MRI imaging[J]. Eur Radiol, 2019, 29(8):4177-4187.
[1] 王亚红, 蔡胜, 葛志通, 杨筱, 李建初. 颅骨骨膜窦的超声表现一例[J/OL]. 中华医学超声杂志(电子版), 2024, 21(11): 1089-1091.
[2] 顾莉莉, 姜凡. 安徽省超声产前筛查切面图像质量现状调查情况及分析[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 671-674.
[3] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[4] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[5] 李华志, 曹广, 刘殿刚, 张雅静. 不同入路下行肝切除术治疗原发性肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 52-55.
[6] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[7] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[8] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[9] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[10] 王秋生. 胆道良性疾病诊疗策略[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 779-782.
[11] 李浩, 陈棋帅, 费发珠, 张宁伟, 李元东, 王硕晨, 任宾. 慢性肝病肝纤维化无创诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 863-867.
[12] 谭瑞义. 小细胞骨肉瘤诊断及治疗研究现状与进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 781-784.
[13] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
[14] 王子阳, 王宏宾, 刘晓旌. 血清标志物对甲胎蛋白阴性肝细胞癌诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 677-681.
[15] 陈慧, 邹祖鹏, 周田田, 张艺丹, 张海萍. 皮肤镜对头皮红斑性皮肤病辅助鉴别诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 692-698.
阅读次数
全文


摘要