切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2023, Vol. 12 ›› Issue (01) : 1 -5. doi: 10.3877/cma.j.issn.2095-3232.2023.01.001

所属专题: 述评与论坛

述评

大数据和人工智能在原发性肝癌筛查与诊断中的应用
刘红枝1, 刘景丰2,()   
  1. 1. 350025 福州,福建医科大学孟超肝胆医院东南肝胆健康大数据研究所
    2. 350025 福州,福建医科大学孟超肝胆医院东南肝胆健康大数据研究所;350014 福州,福建省肿瘤医院肝胆外科
  • 收稿日期:2022-11-03 出版日期:2023-02-10
  • 通信作者: 刘景丰
  • 基金资助:
    福建省发展和改革委员会专项基金(31010308); 福州市科技局科技创新平台项目(2021-P-055); 福州市重点专科项目(201912002)

Application of big data and artificial intelligence in screening and diagnosis of primary liver cancer

Hongzhi Liu1, Jingfeng Liu2()   

  • Received:2022-11-03 Published:2023-02-10
  • Corresponding author: Jingfeng Liu
引用本文:

刘红枝, 刘景丰. 大数据和人工智能在原发性肝癌筛查与诊断中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(01): 1-5.

Hongzhi Liu, Jingfeng Liu. Application of big data and artificial intelligence in screening and diagnosis of primary liver cancer[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2023, 12(01): 1-5.

原发性肝癌(肝癌)是世界范围内常见的恶性肿瘤。GLOBOCAN 2020统计数据显示,肝癌年新发病例数居恶性肿瘤第6位,年致死病例数居恶性肿瘤第3位[1]。手术治疗是肝癌根治性治疗的重要手段,但其术后复发率高,5年生存率仅19.6%[2]。近年来,随着医疗数字化、信息化、智能化的不断发展,围绕肝癌诊断、治疗和科研产生了海量的健康医疗数据,包括电子病历系统、影像检查系统、手术视频库、病理图像库、生物信息学资料等数据共同构成涵盖多元数据资源的肝癌临床与科研大数据。构建肝癌大数据平台并将人工智能等先进技术应用于临床场景是提升肝癌诊断和治疗水平、改善患者远期预后的重要手段。近年来国内外学者利用大数据与人工智能在肝癌筛查及诊断方面开展了探索与实践,取得了丰富成果。本研究对肝癌大数据与人工智能在肝癌筛查及诊断中的应用现状作一阐述。

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249.
[2]
Zhang B, Zhang B, Zhang Z, et al. 42,573 cases of hepatectomy in China: a multicenter retrospective investigation[J]. Sci China Life Sci, 2018, 61(6):660-670.
[3]
European Association for the Study of the Liver. EASL clinical practice guidelines: management of hepatocellular carcinoma[J].J Hepatol, 2018, 69(1):182-236.
[4]
Omata M, Cheng AL, Kokudo N, et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update[J]. Hepatol Int, 2017, 11(4):317-370.
[5]
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2):115-132.
[6]
中华人民共和国国家卫生健康委员会医政医管局. 原发性肝癌诊疗指南(2022年版)[J]. 中华消化外科杂志, 2022, 21(2):143-168.
[7]
Tiyarattanachai T, Apiparakoon T, Marukatat S, et al. Development and validation of artificial intelligence to detect and diagnose liver lesions from ultrasound images[J]. PLoS One, 2021, 16(6): e0252882.
[8]
Marya NB, Powers PD, Fujii-Lau L, et al. Application of artificial intelligence using a novel EUS-based convolutional neural network model to identify and distinguish benign and malignant hepatic masses[J]. Gastrointest Endosc, 2021, 93(5):1121-1130, e1.
[9]
Fan R, Papatheodoridis G, Sun J, et al. aMAP risk score predicts hepatocellular carcinoma development in patients with chronic hepatitis[J]. J Hepatol, 2020, 73(6):1368-1378.
[10]
Ioannou GN, Tang W, Beste LA, et al. Assessment of a deep learning model to predict hepatocellular carcinoma in patients with hepatitis C cirrhosis[J]. JAMA Netw Open, 2020, 3(9):e2015626.
[11]
刘景丰, 刘红枝, 陈振伟, 等. 肝病和肝癌大数据平台建设体系及其初步应用[J]. 中华消化外科杂志, 2021, 20(1):46-51.
[12]
Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography[J]. Nat Med, 2019, 25(6):954-961.
[13]
Misawa M, Kudo SE, Mori Y, et al. Artificial intelligence-assisted polyp detection for colonoscopy: initial experience[J]. Gastroenterology, 2018, 154(8):2027-2029, e3.
[14]
Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: clinical challenges and applications[J]. CA Cancer J Clin, 2019, 69(2):127-157.
[15]
Zhou J, Wang W, Lei B, et al. Automatic detection and classification of focal liver lesions based on deep convolutional neural networks: a preliminary study[J]. Front Oncol, 2021(10): 581210.
[16]
Hamm CA, Wang CJ, Savic LJ, et al. Deep learning for liver tumor diagnosis partⅠ: development of a convolutional neural network classifier for multi-phasic MRI[J]. Eur Radiol, 2019, 29(7):3338-3347.
[17]
Wu Y, White GM, Cornelius T, et al. Deep learning LI-RADS grading system based on contrast enhanced multiphase MRI for differentiation between LR-3 and LR-4/LR-5 liver tumors[J]. Ann Transl Med, 2020, 8(11):701.
[18]
Kondo S, Takagi K, Nishida M, et al. Computer-aided diagnosis of focal liver lesions using contrast-enhanced ultrasonography with perflubutane microbubbles[J]. IEEE Trans Med Imaging, 2017, 36(7):1427-1437.
[19]
Le Berre C, Sandborn WJ, Aridhi S, et al. Application of artificial intelligence to gastroenterology and hepatology[J]. Gastroenterology, 2020, 158(1):76-94, e2.
[20]
Wang CJ, Hamm CA, Savic LJ, et al. Deep learning for liver tumor diagnosis partⅡ: convolutional neural network interpretation using radiologic imaging features[J]. Eur Radiol, 2019, 29(7):3348-3357.
[21]
Robertson S, Azizpour H, Smith K, et al. Digital image analysis in breast pathology-from image processing techniques to artificial intelligence[J]. Transl Res, 2018(194):19-35.
[22]
William W, Ware A, Basaza-Ejiri AH, et al. A review of image analysis and machine learning techniques for automated cervical cancer screening from pap-smear images[J]. Comput Methods Programs Biomed, 2018(164):15-22.
[23]
Sharma H, Zerbe N, Klempert I, et al. Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology[J]. Comput Med Imaging Graph, 2017(61):2-13.
[24]
Ayyad SM, Shehata M, Shalaby A, et al. Role of AI and histopathological images in detecting prostate cancer: a survey[J]. Sensors, 2021, 21(8):2586.
[25]
Wang X, Fang Y, Yang S, et al. A hybrid network for automatic hepatocellular carcinoma segmentation in H&E-stained whole slide images[J]. Med Image Anal, 2021(68):101914.
[26]
Roy M, Kong J, Kashyap S, et al. Convolutional autoencoder based model HistoCAE for segmentation of viable tumor regions in liver whole-slide images[J]. Sci Rep, 2021, 11(1):139.
[27]
Liao H, Long Y, Han R, et al. Deep learning-based classification and mutation prediction from histopathological images of hepatocellular carcinoma[J]. Clin Transl Med, 2020, 10(2):e102.
[28]
Kiani A, Uyumazturk B, Rajpurkar P, et al. Impact of a deep learning assistant on the histopathologic classification of liver cancer[J]. NPJ Digit Med, 2020(3):23.
[29]
Chen W, Zhang T, Xu L, et al. Radiomics analysis of contrast-enhanced CT for hepatocellular carcinoma grading[J]. Front Oncol, 2021(11):660509.
[30]
Zhou W, Wang G, Xie G, et al. Grading of hepatocellular carcinoma based on diffusion weighted images with multiple b-values using convolutional neural networks[J]. Med Phys, 2019, 46(9):3951-3960.
[31]
Wang K, Lu X, Zhou H, et al. Deep learning Radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study[J]. Gut, 2019, 68(4):729-741.
[32]
Gu D, Xie Y, Wei J, et al. MRI-based radiomics signature: a potential biomarker for identifying glypican 3-positive hepatocellular carcinoma[J]. J Magn Reson Imaging, 2020, 52(6):1679-1687.
[33]
Wang W, Gu D, Wei J, et al. A radiomics-based biomarker for cytokeratin 19 status of hepatocellular carcinoma with gadoxetic acid-enhanced MRI[J]. Eur Radiol, 2020, 30(5):3004-3014.
[34]
刘红枝, 林海涛, 林昭旺, 等. 机器学习算法在肝细胞癌微血管侵犯术前预测中的应用价值[J]. 中华消化外科杂志, 2020, 19(2):156-165.
[35]
Chen G, Wang R, Zhang C, et al. Integration of pre-surgical blood test results predict microvascular invasion risk in hepatocellular carcinoma[J]. Comput Struct Biotechnol J, 2021(19):826-834.
[36]
Jiang YQ, Cao SE, Cao S, et al. Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning[J]. J Cancer Res Clin Oncol, 2021, 147(3):821-833.
[37]
Zhou W, Jian W, Cen X, et al. Prediction of microvascular invasion of hepatocellular carcinoma based on contrast-enhanced MR and 3D convolutional neural networks[J]. Front Oncol, 2021(11):588010.
[38]
Chen S, Feng S, Wei J, et al. Pretreatment prediction of immunoscore in hepatocellular cancer: a radiomics-based clinical model based on Gd-EOB-DTPA-enhanced MRI imaging[J]. Eur Radiol, 2019, 29(8):4177-4187.
[1] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[2] 韩丹, 王婷, 肖欢, 朱丽容, 陈镜宇, 唐毅. 超声造影与增强CT对儿童肝脏良恶性病变诊断价值的对比分析[J]. 中华医学超声杂志(电子版), 2023, 20(09): 939-944.
[3] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[4] 旺久, 陈军, 朱霞, 米玛央金, 赵胜, 陈欣林, 李建华, 王双. 山南市妇幼保健院开展胎儿系统超声筛查的效果分析[J]. 中华医学超声杂志(电子版), 2023, 20(07): 728-733.
[5] 李培杰, 乔永杰, 张浩强, 曾健康, 谭飞, 李嘉欢, 王静, 周胜虎. 细菌培养阴性的假体周围感染诊治的最新进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 827-833.
[6] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[7] 李建美, 邓静娟, 杨倩. 两种术式联合治疗肝癌合并肝硬化门静脉高压的安全性及随访评价[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 41-44.
[8] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
[9] 杨雪, 张伟, 尚培中, 宋创业, 尚丹丹, 张蔚. 胆囊十二指肠瘘结石经瘘口排出后自愈一例报道[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 707-708.
[10] 邢晓伟, 刘雨辰, 赵冰, 王明刚. 基于术前腹部CT的卷积神经网络对腹壁切口疝术后复发预测价值[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 677-681.
[11] 吴凤芸, 滕鑫, 刘连娟. 高帧频超声造影与增强磁共振对不同直径原发性高分化肝细胞癌的诊断价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 404-408.
[12] 孙欣欣, 刘军, 陈超伍, 孙超. 超声内镜引导细针穿刺抽吸术在胰腺占位性病变中的应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 418-421.
[13] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[14] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[15] 周婷, 孙培培, 张二明, 安欣华, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病诊断现状调查[J]. 中华临床医师杂志(电子版), 2023, 17(07): 790-797.
阅读次数
全文


摘要