切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2023, Vol. 12 ›› Issue (02) : 239 -242. doi: 10.3877/cma.j.issn.2095-3232.2023.02.022

综述

N6-甲基腺苷表观转录组学在原发性肝癌中的研究进展
杨小周1, 赵华栋1,()   
  1. 1. 710038 西安,中国人民解放军空军军医大学第二附属医院普通外科
  • 收稿日期:2022-12-25 出版日期:2023-03-28
  • 通信作者: 赵华栋
  • 基金资助:
    国家自然科学基金(81172287); 陕西省自然科学基础研究计划项目(2020JM-337)

Research progress of N6-methyladenosine epitranscriptomics in hepatocellular carcinoma

Xiaozhou Yang1, Huadong Zhao1()   

  • Received:2022-12-25 Published:2023-03-28
  • Corresponding author: Huadong Zhao
引用本文:

杨小周, 赵华栋. N6-甲基腺苷表观转录组学在原发性肝癌中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2023, 12(02): 239-242.

Xiaozhou Yang, Huadong Zhao. Research progress of N6-methyladenosine epitranscriptomics in hepatocellular carcinoma[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2023, 12(02): 239-242.

除DNA和组蛋白外,RNA(mRNA、tRNA、snRNA等)在不同的位点存在数百种不同种类的修饰。早期对RNA修饰的研究主要集中在mRNA的5'端。N6-甲基腺苷(N6-methyladenosine,m6A)已被认为是哺乳动物mRNA和非编码RNA中含量最丰富的化学修饰,并参与调节多种细胞过程[1]。由于RNA结构和功能的复杂性,深入了解m6A生物学作用仍然极富挑战性。最近研究表明转录后的RNA修饰过程是可逆且动态变化,提示其可能具有类似于DNA和组蛋白修饰的潜在调节能力。这种可逆性修饰与DNA和组蛋白修饰类似,是调控基因表达的重要机制之一。研究这些可逆RNA修饰的前景和功能现在正成为一个新的研究前沿,被称为"RNA表观遗传学"或"表观转录组学"[2]。m6A修饰表观转录组学的研究对原发性肝癌(肝癌)的预后、治疗和术后评估有着广阔的应用前景。本篇综述重点介绍m6A修饰调节及其在肝癌发展和治疗中作用的最新进展。

[1]
Jiang X, Liu B, Nie Z, et al. The role of m6A modification in the biological functions and diseases[J]. Signal Transduct Target Ther, 2021, 6(1):74.
[2]
Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications[J]. Nat Rev Mol Cell Biol, 2017, 18(1):31-42.
[3]
Meyer KD, Saletore Y, Zumbo P, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons[J]. Cell, 2012, 149(7):1635-1646.
[4]
Zheng G, Dahl JA, Niu Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]. Mol Cell, 2013, 49(1):18-29.
[5]
Wang X, Feng J, Xue Y, et al. Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex[J]. Nature, 2016, 534(7608):575-578.
[6]
Ping XL, Sun BF, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase[J]. Cell Res, 2014, 24(2):177-189.
[7]
Schwartz S, Mumbach MR, Jovanovic M, et al. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5' sites[J]. Cell Rep, 2014, 8(1):284-296.
[8]
Patil DP, Chen CK, Pickering BF, et al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression[J]. Nature, 2016, 537(7620):369-373.
[9]
Xiang Y, Laurent B, Hsu CH, et al. RNA m6A methylation regulates the ultraviolet-induced DNA damage response[J]. Nature, 2017, 543(7646):573-576.
[10]
Dina C, Meyre D, Gallina S, et al. Variation in FTO contributes to childhood obesity and severe adult obesity[J]. Nat Genet, 2007, 39(6):724-726.
[11]
Su R, Dong L, Li C, et al. R-2HG exhibits anti-tumor activity by targeting FTO/m6A/MYC/CEBPA signaling[J]. Cell, 2018, 172(1/2): 90-105, e23.
[12]
Mauer J, Luo X, Blanjoie A, et al. Reversible methylation of m6Am in the 5' cap controls mRNA stability[J]. Nature, 2017, 541(7637): 371-375.
[13]
Mauer J, Sindelar M, Despic V, et al. FTO controls reversible m6Am RNA methylation during snRNA biogenesis[J]. Nat Chem Biol, 2019, 15(4):340-347.
[14]
Linder B, Grozhik AV, Olarerin-George AO, et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome[J]. Nat Methods, 2015, 12(8):767-772.
[15]
Xiao W, Adhikari S, Dahal U, et al. Nuclear m(6)A reader YTHDC1 regulates mRNA splicing[J]. Mol Cell, 2016, 61(4):507-519.
[16]
Hsu PJ, Zhu Y, Ma H, et al. Ythdc2 is an N(6)-methyladenosine binding protein that regulates mammalian spermatogenesis[J]. Cell Res, 2017, 27(9):1115-1127.
[17]
Shi H, Wang X, Lu Z, et al. YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA[J]. Cell Res, 2017, 27(3):315-328.
[18]
Xie W, Ma LL, Xu YQ, et al. METTL3 inhibits hepatic insulin sensitivity via N6-methyladenosine modification of Fasn mRNA and promoting fatty acid metabolism[J]. Biochem Biophys Res Commun, 2019, 518(1):120-126.
[19]
Hou J, Zhang H, Liu J, et al. YTHDF2 reduction fuels inflammation and vascular abnormalization in hepatocellular carcinoma[J]. Mol Cancer, 2019, 18(1):163.
[20]
Kessler SM, Laggai S, Barghash A, et al. IMP2/p62 induces genomic instability and an aggressive hepatocellular carcinoma phenotype[J]. Cell Death Dis, 2015(6):e1894.
[21]
Huang H, Weng H, Sun W, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation[J]. Nat Cell Biol, 2018, 20(3):285-295.
[22]
Imam H, Khan M, Gokhale NS, et al. N6-methyladenosine modification of hepatitis B virus RNA differentially regulates the viral life cycle[J]. Proc Natl Acad Sci U S A, 2018, 115(35):8829-8834.
[23]
Gokhale NS, Mcintyre ABR, Mcfadden MJ, et al. N6-methyladenosine in flaviviridae viral RNA genomes regulates infection[J]. Cell Host Microbe, 2016, 20(5):654-665.
[24]
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
[25]
Ma JZ, Yang F, Zhou CC, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N(6)-methyladenosine-dependent primary MicroRNA processing[J]. Hepatology, 2017, 65(2):529-543.
[26]
Han B, Chu C, Su X, et al. N(6)-methyladenosine-dependent primary microRNA-126 processing activated PI3K-AKT-mTOR pathway drove the development of pulmonary fibrosis induced by nanoscale carbon black particles in rats[J]. Nanotoxicology, 2020, 14(1):1-20.
[27]
Chen M, Wei L, Law CT, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2[J]. Hepatology, 2018, 67(6):2254-2270.
[28]
Chen Y, Peng C, Chen J, et al. WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1[J]. Mol Cancer, 2019, 18(1):127.
[29]
Li J, Zhu L, Shi Y, et al. m6A demethylase FTO promotes hepatocellular carcinoma tumorigenesis via mediating PKM2 demethylation[J]. Am J Transl Res, 2019, 11(9):6084-6092.
[30]
Zhao X, Chen Y, Mao Q, et al. Overexpression of YTHDF1 is associated with poor prognosis in patients with hepatocellular carcinoma[J]. Cancer Biomark, 2018, 21(4):859-868.
[31]
Gutschner T, Hammerle M, Pazaitis N, et al. Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) is an important protumorigenic factor in hepatocellular carcinoma[J]. Hepatology, 2014, 59(5):1900-1911.
[32]
Jo HJ, Shim HE, Han ME, et al. WTAP regulates migration and invasion of cholangiocarcinoma cells[J]. J Gastroenterol, 2013, 48(11):1271-1282.
[33]
Rong ZX, Li Z, He JJ, et al. Downregulation of fat mass and obesity associated (FTO) promotes the progression of intrahepatic cholangiocarcinoma[J]. Front Oncol, 2019(9):369.
[34]
Lin X, Chai G, Wu Y, et al. RNA m6A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail[J]. Nat Commun, 2019, 10(1):2065.
[35]
Peng S, Xiao W, Ju D, et al. Identification of entacapone as a chemical inhibitor of FTO mediating metabolic regulation through FOXO1[J]. Sci Transl Med, 2019, 11(488):eaau7116.
[36]
Huang Y, Yan J, Li Q, et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5[J]. Nucleic Acids Res, 2015, 43(1):373-384.
[37]
Cui Q, Shi H, Ye P, et al. m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells[J]. Cell Rep, 2017, 18(11):2622-2634.
[38]
Yang S, Wei J, Cui YH, et al. m6A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade[J]. Nat Commun, 2019, 10(1):2782.
[39]
Han D, Liu J, Chen C, et al. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells[J]. Nature, 2019, 566(7743):270-274.
[1] 高俊颖, 张海洲, 区泓乐, 孙强. FOLFOX-HAIC 为基础的肝细胞癌辅助转化治疗的应用进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(06): 457-463.
[2] 李华志, 曹广, 刘殿刚, 张雅静. 不同入路下行肝切除术治疗原发性肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 52-55.
[3] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[4] 冯旺, 马振中, 汤林花. CT扫描三维重建在肝内胆管细胞癌腹腔镜肝切除术中的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 104-107.
[5] 赖全友, 高远, 汪建林, 屈士斌, 魏丹, 彭伟. 三维重建技术结合腹腔镜精准肝切除术对肝癌患者术后CD4+、CD8+及免疫球蛋白水平的影响[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 651-654.
[6] 屈翔宇, 张懿刚, 李浩令, 邱天, 谈燚. USP24及其共表达肿瘤代谢基因在肝细胞癌中的诊断和预后预测作用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 659-662.
[7] 公宇, 廖媛, 尚梅. 肝细胞癌TACE术后复发影响因素及预测模型建立[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 818-824.
[8] 李一帆, 朱帝文, 任伟新, 鲍应军, 顾俊鹏, 张海潇, 曹耿飞, 阿斯哈尔·哈斯木, 纪卫政. 血GP73水平在原发性肝癌TACE疗效评价中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 825-830.
[9] 刘敏思, 李荣, 李媚. 基于GGT与Plt比值的模型在HBV相关肝细胞癌诊断中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 831-835.
[10] 陆镜明, 韩大为, 任耀星, 黄天笑, 向俊西, 张谞丰, 吕毅, 王傅民. 基于术前影像组学的肝内胆管细胞癌淋巴结转移预测的系统性分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 852-858.
[11] 焦振东, 惠鹏, 金上博. 三维可视化结合ICG显像技术在腹腔镜肝切除术治疗复发性肝癌中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 859-864.
[12] 陈晓鹏, 王佳妮, 练庆海, 杨九妹. 肝细胞癌VOPP1表达及其与预后的关系[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 876-882.
[13] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[14] 吴警, 吐尔洪江·吐逊, 温浩. 肝切除术前肝功能评估新进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 889-893.
[15] 吴雪云, 胡小军, 范应方. 肝切除术中剩余肝再生能力的评估与预测[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 894-897.
阅读次数
全文


摘要