[1] |
Vinayak M, Maurya AK. Quercetin loaded nanoparticles in targeting cancer: recent development[J]. Anticancer Agents Med Chem, 2019, 19(13):1560-1576.
|
[2] |
Qi W, Qi W, Xiong D, et al. Quercetin: its antioxidant mechanism, antibacterial properties and potential application in prevention and control of toxipathy[J]. Molecules, 2022, 27(19):6545.
|
[3] |
Tang SM, Deng XT, Zhou J, et al. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects[J]. Biomedecine Pharmacother, 2020, 121:109604.
|
[4] |
Chagas MDSS, Behrens MD, Moragas-Tellis CJ, et al. Flavonols and flavones as potential anti-inflammatory, antioxidant, and antibacterial compounds[J]. Oxid Med Cell Longev, 2022:9966750.
|
[5] |
Kumar A, Maurya PK. Quercetin mitigates red blood cell membrane bound Na+, K+-ATPase transporter during human aging[J]. J Membr Biol, 2021, 254(5/6):459-462.
|
[6] |
Tokyol C, Yilmaz S, Kahraman A, et al. The effects of desferrioxamine and quercetin on liver injury induced by hepatic ischaemia-reperfusion in rats[J]. Acta Chir Belg, 2006, 106(1):68-72.
|
[7] |
Uylaş MU, Şahin A, Şahintürk V, et al. Quercetin dose affects the fate of hepatic ischemia and reperfusion injury in rats: an experimental research[J]. Int J Surg, 2018, 53: 117-121.
|
[8] |
Shen Q, Qin Z, Kong R. Study on protection function of quercetin on ischemia-reperfusion injury of liver and its mechanism[C]//Proceedings of the 2015 International Forum on Bioinformatics and Medical Engineering, 2015:68-72.
|
[9] |
Su JF, Guo CJ, Wei JY, et al. Protection against hepatic ischemia-reperfusion injury in rats by oral pretreatment with quercetin[J]. Biomed Environ Sci, 2003, 16(1):1-8.
|
[10] |
Becerril S, Rodríguez A, Catalán V, et al. Functional relationship between leptin and nitric oxide in metabolism[J]. Nutrients, 2019, 11(9):2129.
|
[11] |
Banuls C, Rocha M, Rovira-Llopis S, et al. The pivotal role of nitric oxide: effects on the nervous and immune systems[J]. Curr Pharm Des, 2014, 20(29):4679-4689.
|
[12] |
Iwakiri Y, Kim MY. Nitric oxide in liver diseases[J]. Trends Pharmacol Sci, 2015, 36(8):524-536.
|
[13] |
Mukherjee D, Ahmad R, Nayeem S. Molecular interplay promotes amelioration by quercetin during experimental hepatic inflammation in rodents[J]. Int J Biol Macromol, 2022, 222(Pt B):2936-2947.
|
[14] |
Abd-Elbaset M, Arafa ESA, El Sherbiny GA, et al. Quercetin modulates iNOS, eNOS and NOSTRIN expressions and attenuates oxidative stress in warm hepatic ischemia-reperfusion injury in rats[J]. Beni Suef Univ J Basic Appl Sci, 2015, 4(3):246-255.
|
[15] |
刘荣强, 汪国营. Nrf2与肝脏缺血-再灌注损伤[J/CD]. 中华肝脏外科手术学电子杂志, 2016, 5(6):409-412.
|
[16] |
Kimura S, Warabi E, Yanagawa T, et al. Essential role of Nrf2 in keratinocyte protection from UVA by quercetin[J]. Biochem Biophys Res Commun, 2009, 387(1):109-114.
|
[17] |
Motterlini R, Foresti R, Bassi R, et al. Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress[J]. Free Radic Biol Med, 2000, 28(8):1303-1312.
|
[18] |
Pedersen CB, Gregersen N. Stress response profiles in human fibroblasts exposed to heat shock or oxidative stress[J]. Methods Mol Biol, 2010, 648:161-173.
|
[19] |
Chen Y, Li T, Tan P, et al. Kaempferol from Penthorum chinense pursh attenuates hepatic ischemia/reperfusion injury by suppressing oxidative stress and inflammation through activation of the Nrf2/HO-1 signaling pathway[J]. Front Pharmacol, 2022(13):857015.
|
[20] |
Zhao TT, Yang TL, Gong L, et al. Isorhamnetin protects against hypoxia/reoxygenation-induced injure by attenuating apoptosis and oxidative stress in H9c2 cardiomyocytes[J]. Gene, 2018(666):92-99.
|
[21] |
Liu S, Hou W, Yao P, et al. Heme oxygenase-1 mediates the protective role of quercetin against ethanol-induced rat hepatocytes oxidative damage[J]. Toxicol In Vitro, 2012, 26(1):74-80.
|
[22] |
Tsung A, Klune JR, Zhang X, et al. HMGB1 release induced by liver ischemia involves Toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling[J]. J Exp Med, 2007, 204(12):2913-2923.
|
[23] |
Kadono K, Uchida Y, Hirao H, et al. Thrombomodulin attenuates inflammatory damage due to liver ischemia and reperfusion injury in mice in toll-like receptor 4-dependent manner[J]. Am J Transplant, 2017, 17(1):69-80.
|
[24] |
Li X, Liu HC, Yao QY, et al. Quercetin protects mice from ConA-induced hepatitis by inhibiting HMGB1-TLR expression and down-regulating the nuclear factor kappa B pathway[J]. Inflammation, 2016, 39(1):96-106.
|
[25] |
Dong LY, Chen F, Xu M, et al. Quercetin attenuates myocardial ischemia-reperfusion injury via downregulation of the HMGB1-TLR4-NF-κB signaling pathway[J]. Am J Transl Res, 2018, 10(5):1273-1283.
|
[26] |
Wang CP, Li JL, Zhang LZ, et al. Isoquercetin protects cortical neurons from oxygen-glucose deprivation-reperfusion induced injury via suppression of TLR4-NF-кB signal pathway[J]. Neurochem Int, 2013, 63(8):741-749.
|
[27] |
Yuan K, Zhu Q, Lu Q, et al. Quercetin alleviates rheumatoid arthritis by inhibiting neutrophil inflammatory activities[J]. J Nutr Biochem, 2020, 84:108454.
|
[28] |
Ferreira-Silva M, Faria-Silva C, Carvalheiro MC, et al. Quercetin liposomal nanoformulation for ischemia and reperfusion injury treatment[J]. Pharmaceutics, 2022, 14(1):104.
|
[29] |
Lu L, Ma X, Zheng J, et al. Quercetin for myocardial ischemia reperfusion injury: a protocol for systematic review and meta-analysis[J]. Medicine, 2020, 99(26):e20856.
|
[30] |
Wang YY, Chang CY, Lin SY, et al. Quercetin protects against cerebral ischemia/reperfusion and oxygen glucose deprivation/reoxygenation neurotoxicity[J]. J Nutr Biochem, 2020, 83:108436.
|
[31] |
Mohammadrezaei Khorramabadi R, Anbari K, Salahshoor MR,et al. Quercetin postconditioning attenuates gastrocnemius muscle ischemia/reperfusion injury in rats[J]. J Cell Physiol, 2020, 235(12):9876-9883.
|
[32] |
El-Wahsh M, Seifalian AM, Fuller BJ, et al. Induction of adhesion molecule expression in liver ischaemia-reperfusion injury is associated with impaired hepatic parenchymal microcirculation[J]. Br J Surg, 2004, 91(8):1034-1039.
|
[33] |
Al-Khayri JM, Sahana GR, Nagella P, et al. Flavonoids as potential anti-inflammatory molecules: a review[J]. Molecules, 2022, 27(9):2901.
|
[34] |
Chen T, Zhang X, Zhu G, et al. Quercetin inhibits TNF-α induced HUVECs apoptosis and inflammation via downregulating NF-kB and AP-1 signaling pathway in vitro[J]. Medicine, 2020, 99(38):e22241.
|
[35] |
Cheng SC, Wu YH, Huang WC, et al. Anti-inflammatory property of quercetin through downregulation of ICAM-1 and MMP-9 inTNF-α-activated retinal pigment epithelial cells[J]. Cytokine, 2019, 116: 48-60.
|
[36] |
Chen Q, Moghaddas S, Hoppel CL, et al. Reversible blockade of electron transport during ischemia protects mitochondria and decreases myocardial injury following reperfusion[J]. J Pharmacol Exp Ther, 2006, 319(3):1405-1412.
|
[37] |
Zhang YM, Zhang ZY, Wang RX. Protective mechanisms of quercetin against myocardial ischemia reperfusion injury[J]. Front Physiol, 2020(11):956.
|
[38] |
Zhang Y, Qu X, Gao H, et al. Quercetin attenuates NLRP3 inflammasome activation and apoptosis to protect INH-induced liver injury via regulating SIRT1 pathway[J]. Int Immunopharmacol, 2020, 85:106634.
|
[39] |
Zhang Y, Zhang W, Tao L, et al. Quercetin protected against isoniazide-induced HepG2 cell apoptosis by activating the SIRT1/ERK pathway[J]. J Biochem Mol Toxicol, 2019, 33(9):e22369.
|
[40] |
Wu L, Zhang Q, Dai W, et al. Quercetin pretreatment attenuates hepatic ischemia reperfusion-induced apoptosis and autophagy by inhibiting ERK/NF-κB pathway[J]. Gastroenterol Res Pract, 2017:9724217.
|
[41] |
Wang K. Autophagy and apoptosis in liver injury[J]. Cell Cycle, 2015, 14(11):1631-1642.
|
[42] |
Codogno P, Meijer AJ. Autophagy in the liver[J]. J Hepatol, 2013, 59(2):389-391.
|
[43] |
Czaja MJ, Ding WX, Donohue TM Jr, et al. Functions of autophagy in normal and diseased liver[J]. Autophagy, 2013, 9(8):1131-1158.
|
[44] |
Chen X, Wang L, Deng Y, et al. Inhibition of autophagy prolongs recipient survival through promoting CD8+ T cell apoptosis in a rat liver transplantation model[J]. Front Immunol, 2019(10):1356.
|
[45] |
Ge Y, Zhang Q, Jiao Z, et al. Adipose-derived stem cells reduce liver oxidative stress and autophagy induced by ischemia-reperfusion and hepatectomy injury in swine[J]. Life Sci, 2018, 214:62-69.
|
[46] |
Song Y, Zhang Z, Chai Q, et al. ERRATUM: quercetin inhibits intrahepatic cholangiocarcinoma by inducing ferroptosis and inhibiting invasion via the NF-B pathway[J]. Am J Chin Med, 2023, 51(6):1613-1614.
|
[47] |
Huang T, Zhang K, Wang J, et al. Quercetin alleviates acrylamide-induced liver injury by inhibiting autophagy-dependent ferroptosis[J]. J Agric Food Chem, 2023, 71(19):7427-7439.
|
[48] |
Jiang JJ, Zhang GF, Zheng JY, et al. Targeting mitochondrial ROS-mediated ferroptosis by quercetin alleviates high-fat diet-induced hepatic lipotoxicity[J]. Front Pharmacol, 2022(13):876550.
|
[49] |
Zhu SF, Yuan W, Du YL, et al. Research progress of lncRNA and miRNA in hepatic ischemia-reperfusion injury[J]. Hepatobiliary Pancreat Dis Int, 2023, 22(1):45-53.
|
[50] |
Xiao J, Wang F, Wong NK, et al. Global liver disease burdens and research trends: analysis from a Chinese perspective[J]. J Hepatol, 2019, 71(1):212-221.
|
[51] |
Pouwels S, Sakran N, Graham Y, et al. Non-alcoholic fatty liver disease (NAFLD):a review of pathophysiology, clinical management and effects of weight loss[J]. BMC Endocr Disord, 2022, 22(1):63.
|
[52] |
Meroni M, Longo M, Rustichelli A, et al. Nutrition and genetics in NAFLD: the perfect binomium[J]. Int J Mol Sci, 2020, 21(8):2986.
|
[53] |
Alizadeh SR, Ebrahimzadeh MA. Quercetin derivatives: drug design, development, and biological activities, a review[J]. Eur J Med Chem, 2022, 229:114068.
|
[54] |
Liu X, Zhang Y, Liu L, et al. Protective and therapeutic effects of nanoliposomal quercetin on acute liver injury in rats[J]. BMC Pharmacol Toxicol, 2020, 21(1):11.
|
[55] |
Sgrò P, Ceci R, Lista M, et al. Quercetin modulates IGF-Ⅰ and IGF-Ⅱlevels after eccentric exercise-induced muscle-damage: a placebo-controlled study[J]. Front Endocrinol, 2021(12):745959.
|
[56] |
Bazzucchi I, Patrizio F, Ceci R, et al. The effects of quercetin supplementation on eccentric exercise-induced muscle damage[J]. Nutrients, 2019, 11(1):205.
|
[57] |
Vaez S, Parivr K, Amidi F, et al. Quercetin and polycystic ovary syndrome; inflammation, hormonal parameters and pregnancy outcome: a randomized clinical trial[J]. Am J Reprod Immunol, 2023, 89(3):e13644.
|
[58] |
di Pierro F, Derosa G, Maffioli P, et al. Possible therapeutic effects of adjuvant quercetin supplementation against early-stage COVID-19 infection: a prospective, randomized, controlled, and open-label study[J]. Int J Gen Med, 2021(14):2359-2366.
|
[59] |
Shohan M, Nashibi R, Mahmoudian-Sani MR, et al. The therapeutic efficacy of quercetin in combination with antiviral drugs in hospitalized COVID-19 patients: a randomized controlled trial[J]. Eur J Pharmacol, 2022, 914: 174615.
|
[60] |
Gallelli G, Cione E, Serra R, et al. Nano-hydrogel embedded with quercetin and oleic acid as a new formulation in the treatment of diabetic foot ulcer: a pilot study[J]. Int Wound J, 2020, 17(2):485-490.
|
[61] |
袁志平, 陈俐娟, 魏于全, 等. 纳米脂质体槲皮素对肝癌腹水抑制效应实验研究[J]. 癌症, 2006, 25(8):941-945.
|
[62] |
Kanter M, Tuncer I, Erboga M, et al. The effects of quercetin on liver regeneration after liver resection in rats[J]. Folia Morphol, 2016, 75(2):179-187.
|