切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2024, Vol. 13 ›› Issue (02) : 244 -249. doi: 10.3877/cma.j.issn.2095-3232.2024.02.022

综述

槲皮素调控肝缺血-再灌注损伤的研究进展及应用
裴捷1, 毛本亮2, 郝定盈2, 苑伟1, 颜勇1, 吴帆1, 王鹏珍3, 王百林4,()   
  1. 1. 510020 暨南大学附属广州红十字会医院肝胆外科
    2. 550000 贵阳,贵州医科大学临床医学院
    3. 510020 暨南大学附属广州红十字会医院广州市创伤外科研究所
    4. 510020 暨南大学附属广州红十字会医院肝胆外科;550000 贵阳,贵州医科大学临床医学院
  • 收稿日期:2023-11-30 出版日期:2024-04-10
  • 通信作者: 王百林
  • 基金资助:
    国家自然科学基金(81974442); 广东省自然科学基金(2021A1515011261)

Research progress and application of quercetin in regulating hepatic ischemia-reperfusion injury

Jie Pei1, Benliang Mao2, Dingying Hao2, Wei Yuan1, Yong Yan1, Fan Wu1, Pengzhen Wang3, Bailin Wang4,()   

  1. 1. Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital Affiliated to Jinan University, Guangzhou 510020, China
    2. School of Clinical Medicine, Guizhou Medical University, Guiyang 550000, China
    3. Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital Affiliated to Jinan University, Guangzhou 510020, China
    4. Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital Affiliated to Jinan University, Guangzhou 510020, China; School of Clinical Medicine, Guizhou Medical University, Guiyang 550000, China
  • Received:2023-11-30 Published:2024-04-10
  • Corresponding author: Bailin Wang
引用本文:

裴捷, 毛本亮, 郝定盈, 苑伟, 颜勇, 吴帆, 王鹏珍, 王百林. 槲皮素调控肝缺血-再灌注损伤的研究进展及应用[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 244-249.

Jie Pei, Benliang Mao, Dingying Hao, Wei Yuan, Yong Yan, Fan Wu, Pengzhen Wang, Bailin Wang. Research progress and application of quercetin in regulating hepatic ischemia-reperfusion injury[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2024, 13(02): 244-249.

由于肝切除或肝移植手术需要进行一定时间入肝血流阻断,导致发生肝缺血-再灌注损伤(HIRI)不可避免,尤其伴有脂肪肝、肝硬化时,严重影响手术预后。槲皮素是一种来自大自然的类黄酮化合物,具有抗炎、抗氧化、抗衰老、抗癌等药理活性。近年来的研究表明,槲皮素在心、脑、肾、肝等多器官的功能失调保护机制中发挥重要作用,且其抗HIRI的肝保护作用逐渐成为目前研究的热点。总结文献发现,槲皮素在抗氧化应激、减轻炎症反应以及抗细胞凋亡与自噬等方面均能发挥不错的作用,这使得其用于临床改善HIRI具有良好的潜力。

Hepatic ischemia-reperfusion injury (HIRI) is an inevitable event during liver resection or liver transplantation because it requires a certain period of time for hepatic inflow occlusion. HIRI severely affects surgical prognosis, especially for patients with fatty liver disease and cirrhosis. Quercetin is a natural flavonoid compound, which exerts anti-inflammatory, anti-oxidation, anti-aging and anti-cancer effects. Recent studies have shown that quercetin plays an important role in the mechanism underlying the protection of multi-organ dysfunction such as heart, brain, kidney, liver and so on. In addition, the anti-HIRI role of quercetin in liver protection has gradually become the hot topic of current research. According to literature review, quercetin has been proven to play an effective role in anti-oxidative stress, mitigating inflammatory reaction, anti-apoptosis and autophagy, which has potential to alleviate HIRI in clinical practice.

[1]
Vinayak M, Maurya AK. Quercetin loaded nanoparticles in targeting cancer: recent development[J]. Anticancer Agents Med Chem, 2019, 19(13):1560-1576.
[2]
Qi W, Qi W, Xiong D, et al. Quercetin: its antioxidant mechanism, antibacterial properties and potential application in prevention and control of toxipathy[J]. Molecules, 2022, 27(19):6545.
[3]
Tang SM, Deng XT, Zhou J, et al. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects[J]. Biomedecine Pharmacother, 2020, 121:109604.
[4]
Chagas MDSS, Behrens MD, Moragas-Tellis CJ, et al. Flavonols and flavones as potential anti-inflammatory, antioxidant, and antibacterial compounds[J]. Oxid Med Cell Longev, 2022:9966750.
[5]
Kumar A, Maurya PK. Quercetin mitigates red blood cell membrane bound Na+, K+-ATPase transporter during human aging[J]. J Membr Biol, 2021, 254(5/6):459-462.
[6]
Tokyol C, Yilmaz S, Kahraman A, et al. The effects of desferrioxamine and quercetin on liver injury induced by hepatic ischaemia-reperfusion in rats[J]. Acta Chir Belg, 2006, 106(1):68-72.
[7]
Uylaş MU, Şahin A, Şahintürk V, et al. Quercetin dose affects the fate of hepatic ischemia and reperfusion injury in rats: an experimental research[J]. Int J Surg, 2018, 53: 117-121.
[8]
Shen Q, Qin Z, Kong R. Study on protection function of quercetin on ischemia-reperfusion injury of liver and its mechanism[C]//Proceedings of the 2015 International Forum on Bioinformatics and Medical Engineering, 2015:68-72.
[9]
Su JF, Guo CJ, Wei JY, et al. Protection against hepatic ischemia-reperfusion injury in rats by oral pretreatment with quercetin[J]. Biomed Environ Sci, 2003, 16(1):1-8.
[10]
Becerril S, Rodríguez A, Catalán V, et al. Functional relationship between leptin and nitric oxide in metabolism[J]. Nutrients, 2019, 11(9):2129.
[11]
Banuls C, Rocha M, Rovira-Llopis S, et al. The pivotal role of nitric oxide: effects on the nervous and immune systems[J]. Curr Pharm Des, 2014, 20(29):4679-4689.
[12]
Iwakiri Y, Kim MY. Nitric oxide in liver diseases[J]. Trends Pharmacol Sci, 2015, 36(8):524-536.
[13]
Mukherjee D, Ahmad R, Nayeem S. Molecular interplay promotes amelioration by quercetin during experimental hepatic inflammation in rodents[J]. Int J Biol Macromol, 2022, 222(Pt B):2936-2947.
[14]
Abd-Elbaset M, Arafa ESA, El Sherbiny GA, et al. Quercetin modulates iNOS, eNOS and NOSTRIN expressions and attenuates oxidative stress in warm hepatic ischemia-reperfusion injury in rats[J]. Beni Suef Univ J Basic Appl Sci, 2015, 4(3):246-255.
[15]
刘荣强, 汪国营. Nrf2与肝脏缺血-再灌注损伤[J/CD]. 中华肝脏外科手术学电子杂志, 2016, 5(6):409-412.
[16]
Kimura S, Warabi E, Yanagawa T, et al. Essential role of Nrf2 in keratinocyte protection from UVA by quercetin[J]. Biochem Biophys Res Commun, 2009, 387(1):109-114.
[17]
Motterlini R, Foresti R, Bassi R, et al. Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress[J]. Free Radic Biol Med, 2000, 28(8):1303-1312.
[18]
Pedersen CB, Gregersen N. Stress response profiles in human fibroblasts exposed to heat shock or oxidative stress[J]. Methods Mol Biol, 2010, 648:161-173.
[19]
Chen Y, Li T, Tan P, et al. Kaempferol from Penthorum chinense pursh attenuates hepatic ischemia/reperfusion injury by suppressing oxidative stress and inflammation through activation of the Nrf2/HO-1 signaling pathway[J]. Front Pharmacol, 2022(13):857015.
[20]
Zhao TT, Yang TL, Gong L, et al. Isorhamnetin protects against hypoxia/reoxygenation-induced injure by attenuating apoptosis and oxidative stress in H9c2 cardiomyocytes[J]. Gene, 2018(666):92-99.
[21]
Liu S, Hou W, Yao P, et al. Heme oxygenase-1 mediates the protective role of quercetin against ethanol-induced rat hepatocytes oxidative damage[J]. Toxicol In Vitro, 2012, 26(1):74-80.
[22]
Tsung A, Klune JR, Zhang X, et al. HMGB1 release induced by liver ischemia involves Toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling[J]. J Exp Med, 2007, 204(12):2913-2923.
[23]
Kadono K, Uchida Y, Hirao H, et al. Thrombomodulin attenuates inflammatory damage due to liver ischemia and reperfusion injury in mice in toll-like receptor 4-dependent manner[J]. Am J Transplant, 2017, 17(1):69-80.
[24]
Li X, Liu HC, Yao QY, et al. Quercetin protects mice from ConA-induced hepatitis by inhibiting HMGB1-TLR expression and down-regulating the nuclear factor kappa B pathway[J]. Inflammation, 2016, 39(1):96-106.
[25]
Dong LY, Chen F, Xu M, et al. Quercetin attenuates myocardial ischemia-reperfusion injury via downregulation of the HMGB1-TLR4-NF-κB signaling pathway[J]. Am J Transl Res, 2018, 10(5):1273-1283.
[26]
Wang CP, Li JL, Zhang LZ, et al. Isoquercetin protects cortical neurons from oxygen-glucose deprivation-reperfusion induced injury via suppression of TLR4-NF-кB signal pathway[J]. Neurochem Int, 2013, 63(8):741-749.
[27]
Yuan K, Zhu Q, Lu Q, et al. Quercetin alleviates rheumatoid arthritis by inhibiting neutrophil inflammatory activities[J]. J Nutr Biochem, 2020, 84:108454.
[28]
Ferreira-Silva M, Faria-Silva C, Carvalheiro MC, et al. Quercetin liposomal nanoformulation for ischemia and reperfusion injury treatment[J]. Pharmaceutics, 2022, 14(1):104.
[29]
Lu L, Ma X, Zheng J, et al. Quercetin for myocardial ischemia reperfusion injury: a protocol for systematic review and meta-analysis[J]. Medicine, 2020, 99(26):e20856.
[30]
Wang YY, Chang CY, Lin SY, et al. Quercetin protects against cerebral ischemia/reperfusion and oxygen glucose deprivation/reoxygenation neurotoxicity[J]. J Nutr Biochem, 2020, 83:108436.
[31]
Mohammadrezaei Khorramabadi R, Anbari K, Salahshoor MR,et al. Quercetin postconditioning attenuates gastrocnemius muscle ischemia/reperfusion injury in rats[J]. J Cell Physiol, 2020, 235(12):9876-9883.
[32]
El-Wahsh M, Seifalian AM, Fuller BJ, et al. Induction of adhesion molecule expression in liver ischaemia-reperfusion injury is associated with impaired hepatic parenchymal microcirculation[J]. Br J Surg, 2004, 91(8):1034-1039.
[33]
Al-Khayri JM, Sahana GR, Nagella P, et al. Flavonoids as potential anti-inflammatory molecules: a review[J]. Molecules, 2022, 27(9):2901.
[34]
Chen T, Zhang X, Zhu G, et al. Quercetin inhibits TNF-α induced HUVECs apoptosis and inflammation via downregulating NF-kB and AP-1 signaling pathway in vitro[J]. Medicine, 2020, 99(38):e22241.
[35]
Cheng SC, Wu YH, Huang WC, et al. Anti-inflammatory property of quercetin through downregulation of ICAM-1 and MMP-9 inTNF-α-activated retinal pigment epithelial cells[J]. Cytokine, 2019, 116: 48-60.
[36]
Chen Q, Moghaddas S, Hoppel CL, et al. Reversible blockade of electron transport during ischemia protects mitochondria and decreases myocardial injury following reperfusion[J]. J Pharmacol Exp Ther, 2006, 319(3):1405-1412.
[37]
Zhang YM, Zhang ZY, Wang RX. Protective mechanisms of quercetin against myocardial ischemia reperfusion injury[J]. Front Physiol, 2020(11):956.
[38]
Zhang Y, Qu X, Gao H, et al. Quercetin attenuates NLRP3 inflammasome activation and apoptosis to protect INH-induced liver injury via regulating SIRT1 pathway[J]. Int Immunopharmacol, 2020, 85:106634.
[39]
Zhang Y, Zhang W, Tao L, et al. Quercetin protected against isoniazide-induced HepG2 cell apoptosis by activating the SIRT1/ERK pathway[J]. J Biochem Mol Toxicol, 2019, 33(9):e22369.
[40]
Wu L, Zhang Q, Dai W, et al. Quercetin pretreatment attenuates hepatic ischemia reperfusion-induced apoptosis and autophagy by inhibiting ERK/NF-κB pathway[J]. Gastroenterol Res Pract, 2017:9724217.
[41]
Wang K. Autophagy and apoptosis in liver injury[J]. Cell Cycle, 2015, 14(11):1631-1642.
[42]
Codogno P, Meijer AJ. Autophagy in the liver[J]. J Hepatol, 2013, 59(2):389-391.
[43]
Czaja MJ, Ding WX, Donohue TM Jr, et al. Functions of autophagy in normal and diseased liver[J]. Autophagy, 2013, 9(8):1131-1158.
[44]
Chen X, Wang L, Deng Y, et al. Inhibition of autophagy prolongs recipient survival through promoting CD8+ T cell apoptosis in a rat liver transplantation model[J]. Front Immunol, 2019(10):1356.
[45]
Ge Y, Zhang Q, Jiao Z, et al. Adipose-derived stem cells reduce liver oxidative stress and autophagy induced by ischemia-reperfusion and hepatectomy injury in swine[J]. Life Sci, 2018, 214:62-69.
[46]
Song Y, Zhang Z, Chai Q, et al. ERRATUM: quercetin inhibits intrahepatic cholangiocarcinoma by inducing ferroptosis and inhibiting invasion via the NF-B pathway[J]. Am J Chin Med, 2023, 51(6):1613-1614.
[47]
Huang T, Zhang K, Wang J, et al. Quercetin alleviates acrylamide-induced liver injury by inhibiting autophagy-dependent ferroptosis[J]. J Agric Food Chem, 2023, 71(19):7427-7439.
[48]
Jiang JJ, Zhang GF, Zheng JY, et al. Targeting mitochondrial ROS-mediated ferroptosis by quercetin alleviates high-fat diet-induced hepatic lipotoxicity[J]. Front Pharmacol, 2022(13):876550.
[49]
Zhu SF, Yuan W, Du YL, et al. Research progress of lncRNA and miRNA in hepatic ischemia-reperfusion injury[J]. Hepatobiliary Pancreat Dis Int, 2023, 22(1):45-53.
[50]
Xiao J, Wang F, Wong NK, et al. Global liver disease burdens and research trends: analysis from a Chinese perspective[J]. J Hepatol, 2019, 71(1):212-221.
[51]
Pouwels S, Sakran N, Graham Y, et al. Non-alcoholic fatty liver disease (NAFLD):a review of pathophysiology, clinical management and effects of weight loss[J]. BMC Endocr Disord, 2022, 22(1):63.
[52]
Meroni M, Longo M, Rustichelli A, et al. Nutrition and genetics in NAFLD: the perfect binomium[J]. Int J Mol Sci, 2020, 21(8):2986.
[53]
Alizadeh SR, Ebrahimzadeh MA. Quercetin derivatives: drug design, development, and biological activities, a review[J]. Eur J Med Chem, 2022, 229:114068.
[54]
Liu X, Zhang Y, Liu L, et al. Protective and therapeutic effects of nanoliposomal quercetin on acute liver injury in rats[J]. BMC Pharmacol Toxicol, 2020, 21(1):11.
[55]
Sgrò P, Ceci R, Lista M, et al. Quercetin modulates IGF-Ⅰ and IGF-Ⅱlevels after eccentric exercise-induced muscle-damage: a placebo-controlled study[J]. Front Endocrinol, 2021(12):745959.
[56]
Bazzucchi I, Patrizio F, Ceci R, et al. The effects of quercetin supplementation on eccentric exercise-induced muscle damage[J]. Nutrients, 2019, 11(1):205.
[57]
Vaez S, Parivr K, Amidi F, et al. Quercetin and polycystic ovary syndrome; inflammation, hormonal parameters and pregnancy outcome: a randomized clinical trial[J]. Am J Reprod Immunol, 2023, 89(3):e13644.
[58]
di Pierro F, Derosa G, Maffioli P, et al. Possible therapeutic effects of adjuvant quercetin supplementation against early-stage COVID-19 infection: a prospective, randomized, controlled, and open-label study[J]. Int J Gen Med, 2021(14):2359-2366.
[59]
Shohan M, Nashibi R, Mahmoudian-Sani MR, et al. The therapeutic efficacy of quercetin in combination with antiviral drugs in hospitalized COVID-19 patients: a randomized controlled trial[J]. Eur J Pharmacol, 2022, 914: 174615.
[60]
Gallelli G, Cione E, Serra R, et al. Nano-hydrogel embedded with quercetin and oleic acid as a new formulation in the treatment of diabetic foot ulcer: a pilot study[J]. Int Wound J, 2020, 17(2):485-490.
[61]
袁志平, 陈俐娟, 魏于全, 等. 纳米脂质体槲皮素对肝癌腹水抑制效应实验研究[J]. 癌症, 2006, 25(8):941-945.
[62]
Kanter M, Tuncer I, Erboga M, et al. The effects of quercetin on liver regeneration after liver resection in rats[J]. Folia Morphol, 2016, 75(2):179-187.
[1] 丁建民, 秦正义, 张翔, 周燕, 周洪雨, 王彦冬, 经翔. 超声造影与普美显磁共振成像对具有高危因素的≤3 cm肝结节进行LI-RADS分类诊断的前瞻性研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 930-938.
[2] 吕衡, 董理聪, 谢海琴, 赵卓非, 刘俐, 孙德胜. 基于CT-超声对照的肝脏局灶性病变超声漏诊状况分析:一项单中心横断面质量控制调查报告[J]. 中华医学超声杂志(电子版), 2023, 20(07): 712-716.
[3] 高晋鸿, 郝少龙, 刘勇, 翁以炳, 韩威, 王冠, 张腾, 刘鹏, 张磊, 赵鑫宇. 腹腔镜阑尾切除术前应用吲哚美辛栓和氯诺昔康疗效的比较[J]. 中华普通外科学文献(电子版), 2023, 17(04): 293-297.
[4] 刘超凡, 王文越, 杨珵璨, 朱冬梓, 王兵. 胃袖状切除术上调循环Nrg4浓度抑制肝脏脂肪酸合成改善肥胖小鼠肝脏脂肪变性[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 133-136.
[5] 彭进, 岳扬, 余德才. 基于Laennec膜指引多次肝脏手术后肝周粘连分离[J]. 中华腔镜外科杂志(电子版), 2023, 16(04): 243-245.
[6] 唐亦骁, 何心渝, 徐骁, 卫强. 肝切除术中肝血流控制技术研究进展[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 134-139.
[7] 李乐, 朱志军. 铁死亡及其在肝脏缺血-再灌注损伤中的研究进展[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 109-113.
[8] 史亚波, 李扬, 黄长文. 缺血-再灌注损伤促进肝癌复发机制的研究进展[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 96-99.
[9] 韩宇, 张武, 李安琪, 陈文颖, 谢斯栋. MRI肝脏影像报告和数据系统对非肝硬化乙肝患者肝细胞癌的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 669-673.
[10] 唐灿, 李向阳, 秦浩然, 李婧, 王天云, 柯阳, 朱红. 原发性肝脏神经内分泌肿瘤单中心12例诊治与疗效分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 674-680.
[11] 李双喜, 胡宗凯, 赵静, 黄洁. 肝血管瘤治疗指征及治疗策略[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 504-510.
[12] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
[13] 吴钰娴, 冯亚园, 霍雷, 贾宁阳, 张娟. 原发性肝脏淋巴瘤的影像学诊断价值研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 349-353.
[14] 林加文, 印于, 杨俊, 朱晓黎, 王万胜. 肝动门静脉瘘合并腹水一例[J]. 中华介入放射学电子杂志, 2023, 11(03): 289-291.
[15] 徐宇, 曹庆, 冯盈, 李梦杰. 一种改良肝脏悬吊技术在腹腔镜减重手术中的应用研究[J]. 中华肥胖与代谢病电子杂志, 2023, 09(04): 246-252.
阅读次数
全文


摘要