[1] |
Soper NJ. Laparoscopic cholecystectomy[J]. Curr Probl Surg, 1991, 28(9):581-655.
|
[2] |
Olsen DO. Laparoscopic cholecystectomy[J]. Am J Surg, 1991, 161(3):339-344.
|
[3] |
Wood SG, Dai F, Dabu-Bondoc S, et al. Transvaginal cholecystectomy learning curve[J]. Surg Endosc, 2015, 29(7):1837-1841.
|
[4] |
Choi YJ, Jin EH, Lim JH, et al. Increased risk of cancer after cholecystectomy: a nationwide cohort study in Korea including123, 295 patients[J]. Gut Liver, 2022, 16(3):465-473.
|
[5] |
Yao Y, Li X, Xu B, et al. Cholecystectomy promotes colon carcinogenesis by activating the Wnt signaling pathway by increasing the deoxycholic acid level[J]. Cell Commun Signal, 2022, 20(1):71.
|
[6] |
Doyle MT, Twomey CF, Owens TM, et al. Gastroesophageal reflux and tracheal contamination during laparoscopic cholecystectomy and diagnostic gynecological laparoscopy[J]. Anesth Analg, 1998, 86(3):624-628.
|
[7] |
Boehme J, McKinley S, Michael Brunt L, et al. Patient comorbidities increase postoperative resource utilization after laparoscopic and open cholecystectomy[J]. Surg Endosc, 2016, 30(6):2217-2230.
|
[8] |
Sallum RA, Padrão EM, Szachnowicz S, et al. Prevalence of gallstones in 1,229 patients submitted to surgical laparoscopic treatment of GERD and esophageal achalasia: associated cholecystectomy was a safe procedure[J]. Braz Arch Dig Surg, 2015, 28(2):113-116.
|
[9] |
Katan MB. Apolipoprotein E isoforms, serum cholesterol, and cancer[J]. Lancet, 1986, 1(8479):507-508.
|
[10] |
Emdin CA, Khera AV, Kathiresan S. Mendelian randomization[J]. JAMA, 2017, 318(19):1925-1926.
|
[11] |
Hemani G, Zheng J, Elsworth B, et al. The MR-Base platform supports systematic causal inference across the human phenome[J]. Elife, 2018, 7: e34408.
|
[12] |
Smith GD, Ebrahim S. Mendelian randomization: prospects, potentials, and limitations[J]. Int J Epidemiol, 2004, 33(1):30-42.
|
[13] |
Lawlor DA, Harbord RM, Sterne JA, et al. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology[J]. Stat Med, 2008, 27(8):1133-1163.
|
[14] |
Burgess S, Davies NM, Thompson SG. Bias due to participant overlap in two-sample Mendelian randomization[J]. Genet Epidemiol, 2016, 40(7):597-608.
|
[15] |
Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression[J]. Int J Epidemiol, 2015, 44(2):512-525.
|
[16] |
Bowden J, Davey Smith G, Haycock PC, et al. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted Median estimator[J]. Genet Epidemiol, 2016, 40(4):304-314.
|
[17] |
Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data[J]. Genet Epidemiol, 2013, 37(7):658-665.
|
[18] |
Verbanck M, Chen CY, Neale B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases[J]. Nat Genet, 2018, 50(5):693-698.
|
[19] |
Kamat MA, Blackshaw JA, Young R, et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations[J]. Bioinformatics, 2019, 35(22):4851-4853.
|
[20] |
Bass RB, Teitelbaum EN. Novel advances in surgery for gallstone disease[J]. Curr Gastroenterol Rep, 2022, 24(7):89-98.
|
[21] |
Williamson T, Song SE. Robotic surgery techniques to improve traditional laparoscopy[J]. JSLS, 2022, 26(2):e2022.00002.
|
[22] |
Nix JT. Study of the relationship of environmental factors to the type and frequency of cancer causing death in nuns, 1963[J]. Hosp Prog, 1964, 45: 71-74.
|
[23] |
Qin Q, Li W, Ren A, et al. Benign gallbladder disease is a risk factor for colorectal cancer, but cholecystectomy is not: a propensity score matching analysis[J]. Front Oncol, 2022, 12:1008394.
|
[24] |
Sinha SR, Haileselassie Y, Nguyen LP, et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation[J]. Cell Host Microbe, 2020, 27(4):659-670, e5.
|
[25] |
朱奎宇,张烨,孟庆洋, 等. 腹腔镜胆囊切除术是否会增加结直肠肿瘤患病风险?——系统性回顾及Meta分析[J]. 腹腔镜外科杂志, 2015, 20(12):925-930.
|
[26] |
Sun Y, Yu M, Li D, et al. Asymptomatic chronic suppurative cholecystitis and peritonitis mimicking metastasis by 18F-FDGPET/CT scan during sigmoid colon cancer surveillance[J]. BJR Case Rep, 2022, 7(6):20210046.
|
[27] |
Pang Y, Lv J, Kartsonaki C, et al. Causal effects of gallstone disease on risk of gastrointestinal cancer in Chinese[J]. Br J Cancer, 2021, 124(11):1864-1872.
|
[28] |
Liu YL, Wu JS, Yang YC, et al. Gallbladder stones and gallbladder polyps associated with increased risk of colorectal adenoma in men[J]. J Gastroenterol Hepatol, 2018, 33(4):800-806.
|
[29] |
Cai J, Zhao L, Li L, et al. Ultra-high-performance liquid chromatography-tandem mass spectrometry-based metabolomics unveils the metabolic alterations in colon cancer mice during CT-guided radiofrequency ablation[J]. Biomed Chromatogr, 2023, 37(8):e5658.
|
[30] |
Aktan Ç, Tekin F, Oruç N, et al. CHRM3-associated miRNAs may play a role in bile acid-induced proliferation of H508 colon cancer cells[J]. Turk J Gastroenterol, 2023, 34(3):298-307.
|
[31] |
Liu Y, Zhang S, Zhou W, et al. Secondary bile acids and tumorigenesis in colorectal cancer[J]. Front Oncol, 2022, 12: 813745.
|
[32] |
Thomas JP, Modos D, Rushbrook SM, et al. The emerging role of bile acids in the pathogenesis of inflammatory bowel disease[J]. Front Immunol, 2022, 13: 829525.
|
[33] |
Zeng H, Umar S, Rust B, et al. Secondary bile acids and short chain fatty acids in the colon: a focus on colonic microbiome, cell proliferation, inflammation, and cancer[J]. Int J Mol Sci, 2019, 20(5):1214.
|
[34] |
Chen L, Fan Z, Sun X, et al. Associations of cholecystectomy with the risk of colorectal cancer: a Mendelian randomization study[J]. Chin Med J, 2023, 136(7):840-847.
|
[35] |
Huyghe JR, Harrison TA, Bien SA, et al. Genetic architectures of proximal and distal colorectal cancer are partly distinct[J]. Gut, 2021, 70(7):1325-1334.
|