切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2024, Vol. 13 ›› Issue (04) : 583 -587. doi: 10.3877/cma.j.issn.2095-3232.2024.04.024

综述

非编码RNA调控胰腺纤维化研究进展
翟航1, 张广权1, 吴芳芳1, 史宪杰1,()   
  1. 1. 518033 深圳市,中山大学附属第八医院肝胆胰外科
  • 收稿日期:2024-02-12 出版日期:2024-08-10
  • 通信作者: 史宪杰
  • 基金资助:
    深圳市科创委基础研究项目(面上项目)(JCYJ20220530144404010,JCYJ20220530144404011)

Research progress in the role of non-coding RNA in regulating pancreatic fibrosis

Hang Zhai1, Guangquan Zhang1, Fangfang Wu1, Xianjie Shi1,()   

  1. 1. Department of Hepatobiliary and Pancreatic Surgery, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, China
  • Received:2024-02-12 Published:2024-08-10
  • Corresponding author: Xianjie Shi
引用本文:

翟航, 张广权, 吴芳芳, 史宪杰. 非编码RNA调控胰腺纤维化研究进展[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 583-587.

Hang Zhai, Guangquan Zhang, Fangfang Wu, Xianjie Shi. Research progress in the role of non-coding RNA in regulating pancreatic fibrosis[J]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2024, 13(04): 583-587.

胰腺纤维化(PF)是各种致病因子导致的胰腺组织损伤修复的病理过程,其病理特点主要为反复发作的炎症、坏死引起的细胞外基质(ECM)成分在胰腺内的过度沉积,胰腺纤维化的发生发展与慢性胰腺炎、胰腺癌和胰腺囊性纤维化等疾病密切相关。胰腺星状细胞(PSCs)的活化、合成和分泌大量细胞外基质成分是贯穿胰腺纤维化的核心事件。近年研究表明,非编码RNA(ncRNA)在胰腺纤维化发生发展中发挥重要作用。明确ncRNA在胰腺纤维化发生过程中的作用机制,有助于丰富胰腺纤维化作用机理,并为其治疗提供依据。因此,本文对ncRNA在胰腺纤维化的作用机制进行了阐述。

Pancreatic fibrosis (PF) is a pathological process of pancreatic tissue damage and repair caused by multiple pathogenic factors. The pathological characteristics mainly include excessive deposition of extracellular matrix (ECM) components in the pancreas caused by recurrent inflammation and necrosis. The incidence and development of PF are intimately associated with multiple diseases such as chronic pancreatitis, pancreatic cancer and pancreatic cystic fibrosis, etc. The activation, synthesis and secretion of a large quantity of ECM components by pancreatic stellate cells (PSCs) are the core events throughout the process of PF. Recent studies have shown that non-coding RNA (ncRNA) plays an important role in the development of PF. Clarifying the mechanism of ncRNA in the process of PF contributes to unraveling the mechanism of PF and providing basis for rational treatment. Therefore, the mechanism underlying the role of ncRNA in PF was illustrated.

[1]
Ceyhan GO, Friess H. Pancreatic disease in 2014: pancreatic fibrosis and standard diagnostics[J]. Nat Rev Gastroenterol Hepatol, 2015, 12(2):68-70.
[2]
Yang X, Chen J, Wang J, et al. Very-low-density lipoprotein receptor-enhanced lipid metabolism in pancreatic stellate cells promotes pancreatic fibrosis[J]. Immunity, 2022, 55(7):1185-1199, e8.
[3]
Jiang W, Jin L, Ju D, et al. The pancreatic clock is a key determinant of pancreatic fibrosis progression and exocrine dysfunction[J]. Sci Transl Med, 2022, 14(664):eabn3586.
[4]
Matsui M, Corey DR. Non-coding RNAs as drug targets[J]. Nat Rev Drug Discov, 2017, 16(3):167-179.
[5]
Zhang T, Zhang G, Yang W, et al. Lnc-PFAR facilitates autophagy and exacerbates pancreatic fibrosis by reducing pre-miR-141 maturation in chronic pancreatitis[J]. Cell Death Dis, 2021, 12(11): 996.
[6]
Dey S, Udari LM, RiveraHernandez P, et al. Loss of miR-29a/b1 promotes inflammation and fibrosis in acute pancreatitis[J]. JCI Insight, 2021, 6(19):e149539.
[7]
Ye J, Lin Y, Yu Y, et al. LncRNA NEAT1/microRNA-129-5p/SOCS2 axis regulates liver fibrosis in alcoholic steatohepatitis[J]. J Transl Med, 2020, 18(1):445.
[8]
Apte MV, Haber PS, Applegate TL, et al. Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture[J]. Gut, 1998, 43(1):128-133.
[9]
Yan Z, Ohuchida K, Fei S, et al. Inhibition of ERK1/2 in cancer-associated pancreatic stellate cells suppresses cancer-stromal interaction and metastasis[J]. J Exp Clin Cancer Res, 2019, 38(1): 221.
[10]
Auwercx J, Kischel P, Lefebvre T, et al. TRPM7 modulates human pancreatic stellate cell activation[J]. Cells, 2022, 11(14):2255.
[11]
Zhang Y, Ware MB, Zaidi MY, et al. Heat shock protein-90 inhibition alters activation of pancreatic stellate cells and enhances the efficacy of PD-1 blockade in pancreatic cancer[J]. Mol Cancer Ther, 2021, 20(1):150-160.
[12]
Yao W, Luo D, Lv Z, et al. The Rabep1-mediated endocytosis and activation of trypsinogen to promote pancreatic stellate cell activation[J]. Biomolecules, 2022, 12(8):1063.
[13]
Lee JH, Massagué J. TGF-β in developmental and fibrogenic EMTs[J]. Semin Cancer Biol, 2022, 86(Pt 2):136-145.
[14]
Jaster R, Sparmann G, Emmrich J, et al. Extracellular signal regulated kinases are key mediators of mitogenic signals in rat pancreatic stellate cells[J]. Gut, 2002, 51(4):579-584.
[15]
Humeres C, Shinde AV, Hanna A, et al. Smad7 effects on TGF-β and ErbB2 restrain myofibroblast activation and protect from postinfarction heart failure[J]. J Clin Invest, 2022, 132(3):e146926.
[16]
Dooley S, Hamzavi J, Breitkopf K, et al. Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats[J]. Gastroenterology, 2003, 125(1):178-191.
[17]
Ghafouri-Fard S, Abak A, Talebi SF, et al. Role of miRNA and lncRNAs in organ fibrosis and aging[J]. Biomedecine Pharmacother, 2021, 143:112132.
[18]
Wang X, He Y, Mackowiak B, et al. MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases[J]. Gut, 2021, 70(4):784-795.
[19]
Yang Z, Jiang S, Shang J, et al. LncRNA: shedding light on mechanisms and opportunities in fibrosis and aging[J]. Ageing Res Rev, 2019, 52:17-31.
[20]
Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases[J]. Nat Rev Drug Discov, 2017, 16(3):203-222.
[21]
Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay[J]. Nat Rev Genet, 2010, 11(9):597-610.
[22]
Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. a comprehensive review[J]. EMBO Mol Med, 2017, 9(6):852.
[23]
Dong J, Huth WJ, Marcel N, et al. MiR-15/16 clusters restrict effector Treg cell differentiation and function[J]. J Exp Med, 2023, 220(10):e20230321.
[24]
Tijsen AJ, van der Made I, van den Hoogenhof MM, et al. The microRNA-15 family inhibits the TGFβ-pathway in the heart[J]. Cardiovasc Res, 2014, 104(1):61-71.
[25]
Rawal S, Munasinghe PE, Nagesh PT, et al. Down-regulation of miR-15a/b accelerates fibrotic remodelling in the type 2 diabetic human and mouse heart[J]. Clin Sci, 2017, 131(9):847-863.
[26]
Ji T, Feng W, Zhang X, et al. HDAC inhibitors promote pancreatic stellate cell apoptosis and relieve pancreatic fibrosis by upregulating miR-15/16 in chronic pancreatitis[J]. Hum Cell, 2020, 33(4):1006-1016.
[27]
Yang S, Banerjee S, de Freitas A, et al. Participation of miR-200 in pulmonary fibrosis[J]. Am J Pathol, 2012, 180(2):484-493.
[28]
Sundararajan V, Burk UC, Bajdak-Rusinek K. Revisiting the miR-200 family: a clan of five siblings with essential roles in development and disease[J]. Biomolecules, 2022, 12(6):781.
[29]
Hussein RM, Anwar MM, Farghaly HS, et al. Gallic acid and ferulic acid protect the liver from thioacetamide-induced fibrosis in rats via differential expression of miR-21, miR-30 and miR-200 and impact on TGF-β1/Smad3 signaling[J]. Chem Biol Interact, 2020, 324: 109098.
[30]
Mansour SM, El-Abhar HS, Soubh AA. MiR-200a inversely correlates with Hedgehog and TGF-β canonical/non-canonical trajectories to orchestrate the anti-fibrotic effect of Tadalafil in a bleomycin-induced pulmonary fibrosis model[J]. Inflammopharmacology, 2021, 29(1):167-182.
[31]
Wang Y, Zeng Z, Guan L, et al. GRHL2 induces liver fibrosis and intestinal mucosal barrier dysfunction in non-alcoholic fatty liver disease via microRNA-200 and the MAPK pathway[J]. J Cell Mol Med, 2020, 24(11):6107-6119.
[32]
Xu M, Wang G, Zhou H, et al. TGF-β1-miR-200a-PTEN induces epithelial-mesenchymal transition and fibrosis of pancreatic stellate cells[J]. Mol Cell Biochem, 2017, 431(1/2):161-168.
[33]
Wang Y, Du J, Niu X, et al. MiR-130a-3p attenuates activation and induces apoptosis of hepatic stellate cells in nonalcoholic fibrosing steatohepatitis by directly targeting TGFBR1 and TGFBR2[J]. Cell Death Dis, 2017, 8(5):e2792.
[34]
Ai K, Zhu X, Kang Y, et al. MiR-130a-3p inhibition protects against renal fibrosis in vitro via the TGF-β1/Smad pathway by targeting SnoN[J]. Exp Mol Pathol, 2020, 112:104358.
[35]
Ding Y, Hou Y, Liu Y, et al. MiR-130a-3p alleviates inflammatory and fibrotic phases of pulmonary fibrosis through proinflammatory factor TNF-α and profibrogenic receptor TGF-βRII[J]. Front Pharmacol, 2022, 13:863646.
[36]
Wang Q, Wang H, Jing Q, et al. Regulation of pancreatic fibrosis by acinar cell-derived exosomal miR-130a-3p via targeting of stellate cell PPAR-Γ[J]. J Inflamm Res, 2021, 14:461-477.
[37]
Nojima T, Proudfoot NJ. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics[J]. Nat Rev Mol Cell Biol, 2022, 23(6):389-406.
[38]
Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs[J]. Cell, 2018, 172(3):393-407.
[39]
Tan YT, Lin JF, Li T, et al. LncRNA-mediated posttranslational modifications and reprogramming of energy metabolism in cancer[J]. Cancer Commun, 2021, 41(2):109-120.
[40]
Zhu J, Fu H, Wu Y, et al. Function of lncRNAs and approaches to lncRNA-protein interactions[J]. Sci China Life Sci, 2013, 56(10): 876-885.
[41]
Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA localization and function[J]. J Cell Biol, 2021, 220(2):e202009045.
[42]
Yang L, Deng J, Ma W, et al. Ablation of lncRNA Miat attenuates pathological hypertrophy and heart failure[J]. Theranostics, 2021, 11(16):7995-8007.
[43]
Chen Y, Chen X, Li H, et al. Serum extracellular vesicles containing MIAT induces atrial fibrosis, inflammation and oxidative stress to promote atrial remodeling and atrial fibrillation via blockade of miR-485-5p-mediated CXCL10 inhibition[J]. Clin Transl Med, 2021, 11(8):e482.
[44]
Zhan Y, Tao Q, Meng Q, et al. LncRNA-MIAT activates hepatic stellate cells via regulating Hippo pathway and epithelial-to-mesenchymal transition[J]. Commun Biol, 2023, 6(1):285.
[45]
Bijkerk R, Au YW, Stam W, et al. Long non-coding RNAs rian and miat mediate myofibroblast formation in kidney fibrosis[J]. Front Pharmacol, 2019, 10:215.
[46]
Xiao W, Zheng D, Chen X, et al. Long non-coding RNA MIAT is involved in the regulation of pyroptosis in diabetic cardiomyopathy via targeting miR-214-3p[J]. iScience, 2021, 24(12):103518.
[47]
Liu H, Yu K, Ma P, et al. Long noncoding RNA myocardial infarction-associated transcript regulated the pancreatic stellate cell activation to promote the fibrosis process of chronic pancreatitis[J].J Cell Biochem, 2019, 120(6):9547-9555.
[48]
Zhao X, Sun J, Chen Y, et al. lncRNA PFAR promotes lung fibroblast activation and fibrosis by targeting miR-138 to regulate the YAP1-twist axis[J]. Mol Ther, 2018, 26(9):2206-2217.
[1] 朱韵莹, 高晓琳, 戈艳萍, 王张嵩, 林钊宇, 李劲松, 武东辉. 缺氧相关的长链非编码RNA LINC00970在唾液腺腺样囊性癌中的表达及其作用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 210-217.
[2] 王欢欢, 郑少祥, 郝金锦, 陈文亮. 胃癌分子分型的研究进展及相关联系[J]. 中华普通外科学文献(电子版), 2024, 18(03): 229-234.
[3] 李泽乾, 郝少龙, 张博, 纪凯伦, 韩威. 外周血非编码RNA在胰腺癌中研究进展[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 217-220.
[4] 张博, 韩威, 郝少龙, 李泽乾, 纪智礼. 竞争内源性RNA在胰腺癌研究中的进展[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 213-216.
[5] 邓永豪, 曹嘉正. 长链非编码RNA与肾癌的关系及其在肾癌中的临床应用[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 289-293.
[6] 唐国军, 洪余德, 赵崇玉, 李辽源. 基于TCGA数据库Wnt相关长链非编码RNA构建肾乳头状细胞癌预后模型[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 270-275.
[7] 仝心语, 谭凯, 白亮亮, 杜锡林. 外泌体在肝细胞癌诊疗中的应用[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 384-388.
[8] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[9] 莫建涛, 杨沛泽, 曹瑞奇, 马清涌, 王铮, 仵正, 周灿灿. 基于生物信息学分析构建肝内胆管细胞癌患者铁死亡相关lncRNA预后模型[J]. 中华肝脏外科手术学电子杂志, 2023, 12(02): 185-189.
[10] 胡欣欣, 孟晓凡, 郭兆安. 高血压肾病的发病机制研究进展[J]. 中华肾病研究电子杂志, 2023, 12(06): 339-343.
[11] 方蕊, 宋旭东. 非编码核糖核酸与白内障相关的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 94-98.
[12] 谭欣, 王鹏源, 胡良皞. 慢性胰腺炎抗炎和抗纤维化治疗的研究进展[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 289-296.
[13] 王健, 赵海剑, 孙静, 张晓雨, 陈柏羽. LncRNA SNHG4表达与结直肠癌预后的关系[J]. 中华消化病与影像杂志(电子版), 2023, 13(03): 139-144.
[14] 张慧锋, 张弸, 朱晓蔚, 于鸿. 外泌体长链非编码RNA在胃癌中的研究进展[J]. 中华消化病与影像杂志(电子版), 2023, 13(01): 46-49.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要