[1] |
Siegel R, Naishadham D, Jemal A. Cancer statistics for hispanics/latinos, 2012[J]. CA Cancer J Clin, 2012, 62(5): 283-298. DOI: 10.3322/caac.21153.
|
[2] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492.
|
[3] |
Bertero L, Massa F, Metovic J, et al. Eighth edition of the UICC classification of malignant tumours: an overview of the changes in the pathological TNM classification criteria-what has changed and why?[J]. Virchows Arch, 2018, 472(4): 519-531. DOI: 10.1007/s00428-017-2276-y.
|
[4] |
Birgin E, Rasbach E, Reissfelder C, et al. A systematic review and meta-analysis of caudate lobectomy for treatment of hilar cholangiocarcinoma[J]. Eur J Surg Oncol, 2020, 46(5): 747-753. DOI: 10.1016/j.ejso.2020.01.023.
|
[5] |
Al Mahjoub A, Bouvier V, Menahem B, et al. Epidemiology of intrahepatic, perihilar, and distal cholangiocarcinoma in the French population[J]. Eur J Gastroenterol Hepatol, 2019, 31(6): 678-684. DOI: 10.1097/MEG.0000000000001337.
|
[6] |
Komaya K, Ebata T, Shirai K, et al. Recurrence after resection with curative intent for distal cholangiocarcinoma[J]. Br J Surg, 2017, 104(4): 426-433. DOI: 10.1002/bjs.10452.
|
[7] |
Byrling J, Andersson R, Sasor A, et al. Outcome and evaluation of prognostic factors after pancreaticoduodenectomy for distal cholangiocarcinoma[J]. Ann Gastroenterol, 2017, 30(5): 571-577. DOI: 10.20524/aog.2017.0169.
|
[8] |
Maeta T, Ebata T, Hayashi E, et al. Pancreatoduodenectomy with portal vein resection for distal cholangiocarcinoma[J]. Br J Surg, 2017, 104(11): 1549-1557. DOI: 10.1002/bjs.10596.
|
[9] |
Hoshimoto S, Hishinuma S, Shirakawa H, et al. Association of preoperative platelet-to-lymphocyte ratio with poor outcome in patients with distal cholangiocarcinoma[J]. Oncology, 2019, 96(6): 290-298. DOI: 10.1159/000499050.
|
[10] |
Kumamoto Y, Kaizu T, Tajima H, et al. Neutrophil-to-lymphocyte ratio as a predictor of postoperative morbidity in patients with distal cholangiocarcinoma[J]. Mol Clin Oncol, 2018, 9(4): 362-368. DOI: 10.3892/mco.2018.1698.
|
[11] |
Shin HR, Oh JK, Masuyer E, et al. Epidemiology of cholangiocarcinoma: an update focusing on risk factors[J]. Cancer Sci, 2010, 101(3): 579-585. DOI: 10.1111/j.1349-7006.2009.01458.x.
|
[12] |
Kawai M, Tani M, Kobayashi Y, et al. The ratio between metastatic and examined lymph nodes is an independent prognostic factor for patients with resectable middle and distal bile duct carcinoma[J]. Am J Surg, 2010, 199(4): 447-452. DOI: 10.1016/j.amjsurg.2009.01.019.
|
[13] |
Kiriyama M, Ebata T, Aoba T, et al. Prognostic impact of lymph node metastasis in distal cholangiocarcinoma[J]. Br J Surg, 2015, 102(4): 399-406. DOI: 10.1002/bjs.9752.
|
[14] |
Yu JX, Li Y. The staging system of metastatic lymph node ratio in gastric cancer[J]. Clin Oncol, 2007, 19(4): 269-270. DOI: 10.1016/j.clon.2007.02.003.
|
[15] |
Berger AC, Sigurdson ER, LeVoyer T, et al. Colon cancer survival is associated with decreasing ratio of metastatic to examined lymph nodes[J]. J Clin Oncol, 2005, 23(34): 8706-8712. DOI: 10.1200/JCO.2005.02.8852.
|
[16] |
Nitti D, Marchet A, Olivieri M, et al. Ratio between metastatic and examined lymph nodes is an independent prognostic factor after D2 resection for gastric cancer: analysis of a large European monoinstitutional experience[J]. Ann Surg Oncol, 2003, 10(9): 1077-1085. DOI: 10.1245/aso.2003.03.520.
|
[17] |
Espín F, Bianchi A, Llorca S, et al. Metastatic lymph node ratio versus number of metastatic lymph nodes as a prognostic factor in gastric cancer[J]. Eur J Surg Oncol, 2012, 38(6): 497-502. DOI: 10.1016/j.ejso.2012.01.012.
|
[18] |
Marchet A, Mocellin S, Ambrosi A, et al. The ratio between metastatic and examined lymph nodes (N ratio) is an independent prognostic factor in gastric cancer regardless of the type of lymphadenectomy: results from an Italian multicentric study in 1853 patients[J]. Ann Surg, 2007, 245(4): 543-552. DOI: 10.1097/01.sla.0000250423.43436.e1.
|
[19] |
Pawlik TM, Gleisner AL, Cameron JL, et al. Prognostic relevance of lymph node ratio following pancreaticoduodenectomy for pancreatic cancer[J]. Surgery, 2007, 141(5): 610-618. DOI: 10.1016/j.surg.2006.12.013.
|
[20] |
Tamandl D, Kaczirek K, Gruenberger B, et al. Lymph node ratio after curative surgery for intrahepatic cholangiocarcinoma[J]. Br J Surg, 2009, 96(8): 919-925. DOI: 10.1002/bjs.6654.
|
[21] |
Murakami Y, Uemura K, Sudo T, et al. Perineural invasion in extrahepatic cholangiocarcinoma: prognostic impact and treatment strategies[J]. J Gastrointest Surg, 2013, 17(8): 1429-1439. DOI: 10.1007/s11605-013-2251-0.
|
[22] |
Kim BH, Kim K, Chie EK, et al. Long-term outcome of distal cholangiocarcinoma after pancreaticoduodenectomy followed by adjuvant chemoradiotherapy: a 15-year experience in a single institution[J]. Cancer Res Treat, 2017, 49(2): 473-483. DOI: 10.4143/crt.2016.166.
|
[23] |
Wellner UF, Shen Y, Keck T, et al. The survival outcome and prognostic factors for distal cholangiocarcinoma following surgical resection: a meta-analysis for the 5-year survival[J]. Surg Today, 2017, 47(3): 271-279. DOI: 10.1007/s00595-016-1362-0.
|
[24] |
Arai Y, Totoki Y, Hosoda F, et al. Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma[J]. Hepatology, 2014, 59(4): 1427-1434. DOI: 10.1002/hep.26890.
|
[25] |
Javle M, Lowery M, Shroff RT, et al. Phase II study of BGJ398 in patients with FGFR-altered advanced cholangiocarcinoma[J]. J Clin Oncol, 2018, 36(3): 276-282. DOI: 10.1200/JCO.2017.75.5009.
|
[26] |
Farshidfar F, Zheng S, Gingras MC, et al. Integrative genomic analysis of cholangiocarcinoma identifies distinct IDH-mutant molecular profiles[J]. Cell Rep, 2017, 19(13): 2878-2880. DOI: 10.1016/j.celrep.2017.06.008.
|
[27] |
Brandi G, Tavolari S, Biasco G. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutics targets for tyrosine kinase inhibitors[J]. Gastroenterology, 2012, 143(4): e20-1;authorreplye21. DOI: 10.1053/j.gastro.2012.07.120.
|
[28] |
Sato Y, Kinoshita M, Takemura S, et al. The PD-1/PD-L1 axis may be aberrantly activated in occupational cholangiocarcinoma[J]. Pathol Int, 2017, 67(3): 163-170. DOI: 10.1111/pin.12511.
|
[29] |
Werneburg NW, Yoon JH, Higuchi H, et al. Bile acids activate EGF receptor via a TGF-alpha-dependent mechanism in human cholangiocyte cell lines[J]. Am J Physiol Gastrointest Liver Physiol, 2003, 285(1): G31-G36. DOI: 10.1152/ajpgi.00536.2002.
|
[30] |
Yoon J, Higuchi H, Werneburg NW, et al. Bile acids induce cyclooxygenase-2 expression via the epidermal growth factor receptor in a human cholangiocarcinoma cell line[J]. Gastroenterology, 2002, 122(4): 985-993. DOI: 10.1053/gast.2002.32410.
|
[31] |
Zhang Z, Lai GH, Sirica AE. Celecoxib-induced apoptosis in rat cholangiocarcinoma cells mediated by Akt inactivation and Bax translocation[J]. Hepatology, 2004, 39(4): 1028-1037. DOI: 10.1002/hep.20143.
|
[32] |
Yoshikawa D, Ojima H, Iwasaki M, et al. Clinicopathological and prognostic significance of EGFR, VEGF, and HER2 expression in cholangiocarcinoma[J]. Br J Cancer, 2008, 98(2): 418-425. DOI: 10.1038/sj.bjc.6604129.
|
[33] |
Groeschl RT, Nagorney DM. Portal vein reconstruction during surgery for cholangiocarcinoma[J]. Curr Opin Gastroenterol, 2016, 32(3): 216-224. DOI: 10.1097/MOG.0000000000000259.
|
[34] |
|
[35] |
Coelho R, Silva M, Rodrigues-Pinto E, et al. CA 19-9 as a marker of survival and a predictor of metastization in cholangiocarcinoma[J]. GE Port J Gastroenterol, 2017, 24(3): 114-121. DOI: 10.1159/000452691.
|
[36] |
Tella SH, Kommalapati A, Yadav S, et al. Novel staging system using carbohydrate antigen (CA) 19-9 in extra-hepatic cholangiocarcinoma and its implications on overall survival[J]. Eur J Surg Oncol, 2020, 46(5): 789-795. DOI: 10.1016/j.ejso.2020.01.016.
|