切换至 "中华医学电子期刊资源库"

中华肝脏外科手术学电子杂志 ›› 2025, Vol. 14 ›› Issue (04) : 554 -560. doi: 10.3877/cma.j.issn.2095-3232.2025.04.009

临床研究

TACE-HAIC联合仑伐替尼和PD-1抑制剂四联治疗Ⅲa期肝癌的疗效
匡嘉文, 陈铁军, 龚远锋, 唐辉, 唐云强()   
  1. 510095 广州医科大学附属肿瘤医院肝胆外科
  • 收稿日期:2024-12-23 出版日期:2025-08-10
  • 通信作者: 唐云强
  • 基金资助:
    吴阶平医学基金会临床科研专项资助基金(320.6750.2022-01-8); 湖北陈孝平科技发展基金会(CXPJJH1200008-12)

Efficacy of TACE-HAIC combined with lenvatinib and PD-1 inhibitor in the treatment of stage Ⅲa liver cancer

Jiawen Kuang, Tiejun Chen, Yuanfeng Gong, Hui Tang, Yunqiang Tang()   

  1. Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou 510095, China
  • Received:2024-12-23 Published:2025-08-10
  • Corresponding author: Yunqiang Tang
引用本文:

匡嘉文, 陈铁军, 龚远锋, 唐辉, 唐云强. TACE-HAIC联合仑伐替尼和PD-1抑制剂四联治疗Ⅲa期肝癌的疗效[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 554-560.

Jiawen Kuang, Tiejun Chen, Yuanfeng Gong, Hui Tang, Yunqiang Tang. Efficacy of TACE-HAIC combined with lenvatinib and PD-1 inhibitor in the treatment of stage Ⅲa liver cancer[J/OL]. Chinese Journal of Hepatic Surgery(Electronic Edition), 2025, 14(04): 554-560.

目的

探讨TACE-肝动脉灌注化疗(HAIC)联合仑伐替尼和PD-1抑制剂四联治疗Ⅲa期肝癌的疗效。

方法

回顾性分析2020年1月至2023年5月广州医科大学附属肿瘤医院收治的96例Ⅲa期肝癌患者临床资料。患者均签署知情同意书,符合医学伦理学规定。其中男86例,女10例;年龄33~74岁,中位年龄54岁。患者均为CNLC分期Ⅲa期。根据患者治疗方案不同,患者分为四联组(62例)和三联组(34例),四联组采用TACE-HAIC联合仑伐替尼和PD-1抑制剂,三联组采用TACE-HAIC联合仑伐替尼。采用1∶1倾向性评分匹配(PSM)获得组间均衡。此次研究设置主要研究终点为总生存期(OS)和无进展生存期(PFS)。两组不良反应的发生率等比较采用χ2检验或Fisher确切概率法。生存分析采用Kaplan-Meier法和Log-rank检验。生存影响因素分析采用Cox比例风险模型回归分析。

结果

PSM后四联组中位OS为32.0个月(95%CI:10.985~53.015),三联组14.0个月(95%CI:6.548~21.452),差异有统计学意义(χ2=9.071,P=0.003)。四联组中位PFS为19.0个月(95%CI:9.655~28.345),三联组6.0个月(95%CI:3.197~8.803),差异有统计学意义(χ2=7.811,P=0.005)。Cox回归分析显示,治疗方式(HR=0.318,95%CI:0.144~0.701;P=0.004)和TACE-HAIC次数(HR=0.415,95%CI:0.197~0.873;P=0.020)是影响OS的独立影响因素;治疗方式是PFS的独立影响因素(HR=0.439,95%CI:0.238~0.810;P=0.008)。本研究中未发生与毒性相关的死亡事件。在任何等级和3/4级不良反应中,2组发生率比较差异均无统计学意义(P>0.05)。

结论

TACE-HAIC联合仑伐替尼和PD-1抑制剂的四联治疗方案明显提高了Ⅲa期肝癌患者的生存获益,且不良反应发生率并未增加。

Objective

To evaluate the efficacy of TACE-hepatic arterial infusion chemotherapy (HAIC) combined with lenvatinib and PD-1 inhibitor in the treatment of stage Ⅲa liver cancer.

Methods

Clinical data of 96 patients with stage Ⅲa liver cancer admitted to Cancer Hospital of Guangzhou Medical University from January 2020 to May 2023 were retrospectively analyzed. The informed consents of all patients were obtained and the local ethical committee approval was received. Among them, 86 patients were male and 10 female, aged from 33 to 74 years, with a median age of 54 years. All patients were classified as CNLC stage Ⅲa. According to different treatment protocols, all patients were divided into the quadruple-treatment group (n=62) and triple-treatment group (n=34). In the quadruple-treatment group, patients were treated with TACE-HAIC combined with lenvatinib and PD-1 inhibitor, and those in the triple-treatment group were treated with TACE-HAIC combined with lenvatinib. Inter-group equilibrium was obtained by 1∶1 propensity score matching (PSM). Primary end points were overall survival (OS) and progression-free survival (PFS). The incidence of adverse reactions between two groups was compared by Chi-square test or Fisher’s exact test. Survival analysis was performed by Kaplan-Meier method and Log-rank test. The influencing factors of survival were identified by Cox proportional hazard regression model.

Results

After PSM, the median OS in the quadruple-treatment group was 32.0 months (95%CI: 10.985-53.015), and 14.0 months in the triple-treatment group (95%CI: 6.548-21.452), and the difference was statistically significant (χ2=9.071, P=0.003). The median PFS in the quadruple-treatment group was 19.0 months (95%CI: 9.655-28.345), and 6.0 months in the triple-treatment group (95%CI: 3.197-8.803), and the difference was statistically significant (χ2=7.811, P=0.005). Cox’s regression analysis showed that treatment method (HR=0.318, 95%CI: 0.144-0.701; P=0.004) and frequency of TACE-HAIC (HR=0.415, 95%CI: 0.197-0.873; P=0.020) were the independent influencing factors of OS. Treatment method was an independent influencing factor of PFS (HR=0.439, 95%CI: 0.238-0.810; P=0.008). No toxicity-related death occurred in this study. No significant difference was found in the incidence of any grade and grade 3/4 adverse reactions (all P>0.05).

Conclusions

The quadruple therapy of TACE-HAIC combined with lenvatinib and PD-1 inhibitor can significantly improve the survival benefit of patients with stage Ⅲa liver cancer without sacrificing the incidence of adverse reactions.

表1 PSM前后两组肝癌患者基线资料比较
表2 四联组和三联组肝瘤患者治疗后肿瘤应答情况[例(%)]
图1 四联组和三联组肝瘤患者Kaplan-Meier生存曲线注:PSM后两组均33例;四联组采用TACE-HAIC联合仑伐替尼和PD-1抑制剂治疗;三联组采用TACE-HAIC联合仑伐替尼治疗;HAIC为肝动脉灌注化疗,PSM为倾向性评分匹配
表3 四联组和三联组肝癌患者治疗相关不良反应发生情况(例)
[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
Vogel A, Meyer T, Sapisochin G, et al. Hepatocellular carcinoma[J]. Lancet, 2022, 400(10360): 1345-1362. DOI: 10.1016/s0140-6736(22)01200-4.
[3]
Costentin CE, Ferrone CR, Arellano RS, et al. Hepatocellular carcinoma with macrovascular invasion: defining the optimal treatment strategy[J]. Liver Cancer, 2017, 6(4): 360-374. DOI: 10.1159/000481315.
[4]
Han CL, Tian BW, Yan LJ, et al. Efficacy and safety of immune checkpoint inhibitors for hepatocellular carcinoma patients with macrovascular invasion or extrahepatic spread: a systematic review and meta-analysis of 54 studies with 6187 hepatocellular carcinoma patients[J]. Cancer Immunol Immunother, 2023, 72(7): 1957-1969. DOI: 10.1007/s00262-023-03390-x.
[5]
Luo F, Li M, Ding J, et al. The progress in the treatment of hepatocellular carcinoma with portal vein tumor thrombus[J]. Front Oncol, 2021, 11: 635731. DOI: 10.3389/fonc.2021.635731.
[6]
Lu J, Zhang XP, Zhong BY, et al. Management of patients with hepatocellular carcinoma and portal vein tumour thrombosis: comparing east and west[J]. Lancet Gastroenterol Hepatol, 2019, 4(9): 721-730. DOI: 10.1016/S2468-1253(19)30178-5.
[7]
中华人民共和国国家卫生健康委员会医政司.原发性肝癌诊疗指南(2024年版)[J/OL].中华肝脏外科手术学电子杂志, 2024, 13(4): 407-449.DOI: 10.3877/cma.j.issn.2095-3232.2024.04.001.
[8]
Liu BJ, Gao S, Zhu X, et al. Combination therapy of chemoembolization and hepatic arterial infusion chemotherapy in hepatocellular carcinoma with portal vein tumor thrombosis compared with chemoembolization alone: a propensity score-matched analysis[J]. Biomed Res Int, 2021, 2021: 6670367. DOI: 10.1155/2021/6670367.
[9]
Huang J, Huang W, Zhan M, et al. Drug-eluting bead transarterial chemoembolization combined with FOLFOX-based hepatic arterial infusion chemotherapy for large or huge hepatocellular carcinoma[J]. J Hepatocell Carcinoma, 2021, 8: 1445-1458. DOI: 10.2147/JHC.S339379.
[10]
Yuan Y, He W, Yang Z, et al. TACE-HAIC combined with targeted therapy and immunotherapy versus TACE alone for hepatocellular carcinoma with portal vein tumour thrombus: a propensity score matching study[J]. Int J Surg, 2023, 109(5): 1222-1230. DOI: 10.1097/JS9.0000000000000256.
[11]
Yu SJ. Immunotherapy for hepatocellular carcinoma: recent advances and future targets[J]. Pharmacol Ther, 2023, 244: 108387. DOI: 10.1016/j.pharmthera.2023.108387.
[12]
Wang X, Lu J. Immunotherapy for hepatocellular carcinoma[J]. Chin Med J, 2024, 137(15): 1765-1776. DOI: 10.1097/CM9.0000000000003060.
[13]
Yang X, Yang C, Zhang S, et al. Precision treatment in advanced hepatocellular carcinoma[J]. Cancer Cell, 2024, 42(2): 180-197. DOI: 10.1016/j.ccell.2024.01.007.
[14]
Lau G, Abou-Alfa GK, Cheng AL, et al. Outcomes in the Asian subgroup of the phase III randomised HIMALAYA study of tremelimumab plus durvalumab in unresectable hepatocellular carcinoma[J]. J Hepatol, 2025, 82(2): 258-267. DOI: 10.1016/j.jhep.2024.07.017.
[15]
Llovet JM, Lencioni R. mRECIST for HCC: performance and novel refinements[J]. J Hepatol, 2020, 72(2): 288-306. DOI: 10.1016/j.jhep.2019.09.026.
[16]
Brown ZJ, Tsilimigras DI, Ruff SM, et al. Management of hepatocellular carcinoma: a review[J]. JAMA Surg, 2023, 158(4): 410-420. DOI: 10.1001/jamasurg.2022.7989.
[17]
Llovet JM, Kudo M, Merle P, et al. Lenvatinib plus pembrolizumab versus lenvatinib plus placebo for advanced hepatocellular carcinoma (LEAP-002): a randomised, double-blind, phase 3 trial[J]. Lancet Oncol, 2023, 24(12): 1399-1410. DOI: 10.1016/S1470-2045(23)00469-2.
[18]
Peng Z, Fan W, Zhu B, et al. Lenvatinib combined with transarterial chemoembolization as first-line treatment for advanced hepatocellular carcinoma: a phase III, randomized clinical trial (LAUNCH)[J]. J Clin Oncol, 2023, 41(1): 117-127. DOI: 10.1200/JCO.22.00392.
[19]
Sun B, Zhang L, Sun T, et al. Safety and efficacy of lenvatinib combined with camrelizumab plus transcatheter arterial chemoembolization for unresectable hepatocellular carcinoma: a two-center retrospective study[J]. Front Oncol, 2022, 12: 982948. DOI: 10.3389/fonc.2022.982948.
[20]
Huang Z, Wu Z, Zhang L, et al. The safety and efficacy of TACE combined with HAIC, PD-1 inhibitors, and tyrosine kinase inhibitors for unresectable hepatocellular carcinoma: a retrospective study[J]. Front Oncol, 2024, 14: 1298122. DOI: 10.3389/fonc.2024.1298122.
[21]
Llovet JM, Castet F, Heikenwalder M, et al. Immunotherapies for hepatocellular carcinoma[J]. Nat Rev Clin Oncol, 2022, 19(3): 151-172. DOI: 10.1038/s41571-021-00573-2.
[22]
Tan J, Fan W, Liu T, et al. TREM2+ macrophages suppress CD8+ T-cell infiltration after transarterial chemoembolisation in hepatocellular carcinoma[J]. J Hepatol, 2023, 79(1): 126-140. DOI: 10.1016/j.jhep.2023.02.032.
[23]
Ren Z, Yue Y, Zhang Y, et al. Changes in the peripheral blood Treg cell proportion in hepatocellular carcinoma patients after transarterial chemoembolization with microparticles[J]. Front Immunol, 2021, 12: 624789. DOI: 10.3389/fimmu.2021.624789.
[24]
Pinato DJ, Murray SM, Forner A, et al. Trans-arterial chemoembolization as a loco-regional inducer of immunogenic cell death in hepatocellular carcinoma: implications for immunotherapy[J]. J Immunother Cancer, 2021, 9(9): e003311. DOI: 10.1136/jitc-2021-003311.
[25]
Montasser A, Beaufrère A, Cauchy F, et al. Transarterial chemoembolisation enhances programmed death-1 and programmed death-ligand 1 expression in hepatocellular carcinoma[J]. Histopathology, 2021, 79(1): 36-46. DOI: 10.1111/his.14317.
[26]
戴文聪,臧梦雅,袁国盛,等. 肝动脉灌注化疗及其综合治疗方案对中晚期肝细胞癌患者的临床疗效及预后因素分析[J]. 临床肝胆病杂志,2023,39(7):1592-1599. DOI:10.3969/j.issn.1001-5256.2023.07.013.
[27]
Zhu H, Shan Y, Ge K, et al. Oxaliplatin induces immunogenic cell death in hepatocellular carcinoma cells and synergizes with immune checkpoint blockade therapy[J]. Cell Oncol, 2020, 43(6): 1203-1214. DOI: 10.1007/s13402-020-00552-2.
[28]
Adachi Y, Kamiyama H, Ichikawa K, et al. Inhibition of FGFR reactivates IFNγ signaling in tumor cells to enhance the combined antitumor activity of lenvatinib with anti-PD-1 antibodies[J]. Cancer Res, 2022, 82(2): 292-306. DOI: 10.1158/0008-5472.CAN-20-2426.
[29]
Deng H, Kan A, Lyu N, et al. Dual vascular endothelial growth factor receptor and fibroblast growth factor receptor inhibition elicits antitumor immunity and enhances programmed cell death-1 checkpoint blockade in hepatocellular carcinoma[J]. Liver Cancer, 2020, 9(3): 338-357. DOI: 10.1159/000505695.
[30]
Yi C, Chen L, Lin Z, et al. Lenvatinib targets FGF receptor 4 to enhance antitumor immune response of anti-programmed cell death-1 in HCC[J]. Hepatology, 2021, 74(5): 2544-2560. DOI: 10.1002/hep.31921.
[31]
Hack SP, Zhu AX, Wang Y. Augmenting anticancer immunity through combined targeting of angiogenic and PD-1/PD-L1 pathways: challenges and opportunities[J]. Front Immunol, 2020, 11: 598877. DOI: 10.3389/fimmu.2020.598877.
[1] 顾怡君, 李奕冉, 钱艺, 蒋栋. 基于超声造影定量指标预测肝细胞癌微血管侵犯及评估其复发的研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(05): 451-461.
[2] 邱益霖, 何坤. 肝细胞癌合并门静脉癌栓的治疗进展[J/OL]. 中华普通外科学文献(电子版), 2025, 19(03): 197-202.
[3] 卢超, 陈波, 邢志祥, 周鹏, 王帅. 不同入路下腹腔镜解剖性肝脏切除术治疗肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(03): 254-257.
[4] 韦洋, 赵远权, 王小波, 黄海, 陈洁. BCLC 0/A期肝细胞癌患者术后辅助治疗后早期复发风险分析及预测模型建立[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(02): 157-161.
[5] 杨钰泽, 徐家豪, 杨一石, 王明达, 杨田. 肝细胞癌新辅助治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 515-521.
[6] 罗臻, 韦鹏程, 孙馨, 李照. 肝细胞癌骨转移研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 522-527.
[7] 王楚斯, 刘家伟, 卢逸, 汤照峰. ICG荧光显影在腹腔镜肝癌切除术中临床应用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 549-553.
[8] 龙吟, 何晓东, 廖建国, 黄珏, 张磊. 高复发风险肝癌患者术后靶向免疫治疗的安全性及疗效[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(03): 379-386.
[9] 张宏斌, 杨振宇, 谭凯, 刘冠, 尚磊, 杜锡林. 不可切除肝癌转化治疗后手术的影响因素及预测模型构建[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(03): 387-394.
[10] 甘翌翔, 欧阳俐颖, 潘扬勋, 张耀军, 陈敏山, 徐立. ICGR15和ALBI评分对肝动脉灌注化疗后肝癌肝切除术后肝衰竭和预后的预测价值[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(03): 395-401.
[11] 刘翔, 刘军桂, 张涛, 金奎, 郭宇, 雷磊, 段伟宏. 胰腺癌动脉受侵的类型及手术策略研究[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(03): 442-448.
[12] 张铭燊, 胡永威, 陈德盛, 俞浩远, 梁智星, 陈玉涛, 叶林森, 李华, 杨扬. CEBPZOS通过调控肿瘤增殖与迁移促进肝癌进展的机制研究[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(03): 463-470.
[13] 胡捷, 汪曙红, 张威威. 信迪利单抗联合仑伐替尼及经导管动脉化疗栓塞术治疗中晚期肝癌的疗效及对细胞免疫功能的影响[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(03): 219-223.
[14] 陈文, 张兴华, 严海涛, 张金星, 刘圣, 施海彬, 祖庆泉. 经动脉化疗栓塞术联合仑伐替尼和免疫检查点抑制剂对不可切除肝细胞癌的安全性及有效性[J/OL]. 中华介入放射学电子杂志, 2025, 13(02): 117-122.
[15] 朱帝文, 陈文俊, 陈亮, 李毫, 鲍应军, 李一帆, 阿热阿勒·叶尔江, 郭强, 顾俊鹏, 任伟新. 肝包虫病自体肝移植术后静脉流出道梗阻介入治疗的临床效果评价[J/OL]. 中华介入放射学电子杂志, 2025, 13(02): 123-127.
阅读次数
全文


摘要