[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
|
[2] |
|
[3] |
Costentin CE, Ferrone CR, Arellano RS, et al. Hepatocellular carcinoma with macrovascular invasion: defining the optimal treatment strategy[J]. Liver Cancer, 2017, 6(4): 360-374. DOI: 10.1159/000481315.
|
[4] |
Han CL, Tian BW, Yan LJ, et al. Efficacy and safety of immune checkpoint inhibitors for hepatocellular carcinoma patients with macrovascular invasion or extrahepatic spread: a systematic review and meta-analysis of 54 studies with 6187 hepatocellular carcinoma patients[J]. Cancer Immunol Immunother, 2023, 72(7): 1957-1969. DOI: 10.1007/s00262-023-03390-x.
|
[5] |
Luo F, Li M, Ding J, et al. The progress in the treatment of hepatocellular carcinoma with portal vein tumor thrombus[J]. Front Oncol, 2021, 11: 635731. DOI: 10.3389/fonc.2021.635731.
|
[6] |
Lu J, Zhang XP, Zhong BY, et al. Management of patients with hepatocellular carcinoma and portal vein tumour thrombosis: comparing east and west[J]. Lancet Gastroenterol Hepatol, 2019, 4(9): 721-730. DOI: 10.1016/S2468-1253(19)30178-5.
|
[7] |
|
[8] |
Liu BJ, Gao S, Zhu X, et al. Combination therapy of chemoembolization and hepatic arterial infusion chemotherapy in hepatocellular carcinoma with portal vein tumor thrombosis compared with chemoembolization alone: a propensity score-matched analysis[J]. Biomed Res Int, 2021, 2021: 6670367. DOI: 10.1155/2021/6670367.
|
[9] |
Huang J, Huang W, Zhan M, et al. Drug-eluting bead transarterial chemoembolization combined with FOLFOX-based hepatic arterial infusion chemotherapy for large or huge hepatocellular carcinoma[J]. J Hepatocell Carcinoma, 2021, 8: 1445-1458. DOI: 10.2147/JHC.S339379.
|
[10] |
Yuan Y, He W, Yang Z, et al. TACE-HAIC combined with targeted therapy and immunotherapy versus TACE alone for hepatocellular carcinoma with portal vein tumour thrombus: a propensity score matching study[J]. Int J Surg, 2023, 109(5): 1222-1230. DOI: 10.1097/JS9.0000000000000256.
|
[11] |
Yu SJ. Immunotherapy for hepatocellular carcinoma: recent advances and future targets[J]. Pharmacol Ther, 2023, 244: 108387. DOI: 10.1016/j.pharmthera.2023.108387.
|
[12] |
|
[13] |
Yang X, Yang C, Zhang S, et al. Precision treatment in advanced hepatocellular carcinoma[J]. Cancer Cell, 2024, 42(2): 180-197. DOI: 10.1016/j.ccell.2024.01.007.
|
[14] |
Lau G, Abou-Alfa GK, Cheng AL, et al. Outcomes in the Asian subgroup of the phase III randomised HIMALAYA study of tremelimumab plus durvalumab in unresectable hepatocellular carcinoma[J]. J Hepatol, 2025, 82(2): 258-267. DOI: 10.1016/j.jhep.2024.07.017.
|
[15] |
Llovet JM, Lencioni R. mRECIST for HCC: performance and novel refinements[J]. J Hepatol, 2020, 72(2): 288-306. DOI: 10.1016/j.jhep.2019.09.026.
|
[16] |
Brown ZJ, Tsilimigras DI, Ruff SM, et al. Management of hepatocellular carcinoma: a review[J]. JAMA Surg, 2023, 158(4): 410-420. DOI: 10.1001/jamasurg.2022.7989.
|
[17] |
Llovet JM, Kudo M, Merle P, et al. Lenvatinib plus pembrolizumab versus lenvatinib plus placebo for advanced hepatocellular carcinoma (LEAP-002): a randomised, double-blind, phase 3 trial[J]. Lancet Oncol, 2023, 24(12): 1399-1410. DOI: 10.1016/S1470-2045(23)00469-2.
|
[18] |
Peng Z, Fan W, Zhu B, et al. Lenvatinib combined with transarterial chemoembolization as first-line treatment for advanced hepatocellular carcinoma: a phase III, randomized clinical trial (LAUNCH)[J]. J Clin Oncol, 2023, 41(1): 117-127. DOI: 10.1200/JCO.22.00392.
|
[19] |
Sun B, Zhang L, Sun T, et al. Safety and efficacy of lenvatinib combined with camrelizumab plus transcatheter arterial chemoembolization for unresectable hepatocellular carcinoma: a two-center retrospective study[J]. Front Oncol, 2022, 12: 982948. DOI: 10.3389/fonc.2022.982948.
|
[20] |
Huang Z, Wu Z, Zhang L, et al. The safety and efficacy of TACE combined with HAIC, PD-1 inhibitors, and tyrosine kinase inhibitors for unresectable hepatocellular carcinoma: a retrospective study[J]. Front Oncol, 2024, 14: 1298122. DOI: 10.3389/fonc.2024.1298122.
|
[21] |
Llovet JM, Castet F, Heikenwalder M, et al. Immunotherapies for hepatocellular carcinoma[J]. Nat Rev Clin Oncol, 2022, 19(3): 151-172. DOI: 10.1038/s41571-021-00573-2.
|
[22] |
Tan J, Fan W, Liu T, et al. TREM2 + macrophages suppress CD8 + T-cell infiltration after transarterial chemoembolisation in hepatocellular carcinoma[J]. J Hepatol, 2023, 79(1): 126-140. DOI: 10.1016/j.jhep.2023.02.032.
|
[23] |
Ren Z, Yue Y, Zhang Y, et al. Changes in the peripheral blood Treg cell proportion in hepatocellular carcinoma patients after transarterial chemoembolization with microparticles[J]. Front Immunol, 2021, 12: 624789. DOI: 10.3389/fimmu.2021.624789.
|
[24] |
Pinato DJ, Murray SM, Forner A, et al. Trans-arterial chemoembolization as a loco-regional inducer of immunogenic cell death in hepatocellular carcinoma: implications for immunotherapy[J]. J Immunother Cancer, 2021, 9(9): e003311. DOI: 10.1136/jitc-2021-003311.
|
[25] |
Montasser A, Beaufrère A, Cauchy F, et al. Transarterial chemoembolisation enhances programmed death-1 and programmed death-ligand 1 expression in hepatocellular carcinoma[J]. Histopathology, 2021, 79(1): 36-46. DOI: 10.1111/his.14317.
|
[26] |
|
[27] |
Zhu H, Shan Y, Ge K, et al. Oxaliplatin induces immunogenic cell death in hepatocellular carcinoma cells and synergizes with immune checkpoint blockade therapy[J]. Cell Oncol, 2020, 43(6): 1203-1214. DOI: 10.1007/s13402-020-00552-2.
|
[28] |
Adachi Y, Kamiyama H, Ichikawa K, et al. Inhibition of FGFR reactivates IFNγ signaling in tumor cells to enhance the combined antitumor activity of lenvatinib with anti-PD-1 antibodies[J]. Cancer Res, 2022, 82(2): 292-306. DOI: 10.1158/0008-5472.CAN-20-2426.
|
[29] |
Deng H, Kan A, Lyu N, et al. Dual vascular endothelial growth factor receptor and fibroblast growth factor receptor inhibition elicits antitumor immunity and enhances programmed cell death-1 checkpoint blockade in hepatocellular carcinoma[J]. Liver Cancer, 2020, 9(3): 338-357. DOI: 10.1159/000505695.
|
[30] |
Yi C, Chen L, Lin Z, et al. Lenvatinib targets FGF receptor 4 to enhance antitumor immune response of anti-programmed cell death-1 in HCC[J]. Hepatology, 2021, 74(5): 2544-2560. DOI: 10.1002/hep.31921.
|
[31] |
Hack SP, Zhu AX, Wang Y. Augmenting anticancer immunity through combined targeting of angiogenic and PD-1/PD-L1 pathways: challenges and opportunities[J]. Front Immunol, 2020, 11: 598877. DOI: 10.3389/fimmu.2020.598877.
|