| [1] |
Klein AP. Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(7): 493-502. DOI: 10.1038/s41575-021-00457-x.
|
| [2] |
Collisson EA, Bailey P, Chang DK, et al. Molecular subtypes of pancreatic cancer[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(4): 207-220. DOI: 10.1038/s41575-019-0109-y.
|
| [3] |
Godfrey JD, Morton JP, Wilczynska A, et al. miR-142-3p is downregulated in aggressive p53 mutant mouse models of pancreatic ductal adenocarcinoma by hypermethylation of its locus[J]. Cell Death Dis, 2018, 9: 644. DOI: 10.1038/s41419-018-0628-4.
|
| [4] |
|
| [5] |
|
| [6] |
Joyce DP, Kerin MJ, Dwyer RM. Exosome-encapsulated microRNAs as circulating biomarkers for breast cancer[J]. Int J Cancer, 2016, 139(7): 1443-1448. DOI: 10.1002/ijc.30179.
|
| [7] |
Melo SA, Luecke LB, Kahlert C, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer[J]. Nature, 2015, 523(7559): 177-182. DOI: 10.1038/nature14581.
|
| [8] |
Zou X, Wei J, Huang Z, et al. Identification of a six-miRNA panel in serum benefiting pancreatic cancer diagnosis[J]. Cancer Med, 2019, 8(6): 2810-2822. DOI: 10.1002/cam4.2145.
|
| [9] |
Li SR, Man QW, Gao X, et al. Tissue-derived extracellular vesicles in cancers and non-cancer diseases: present and future[J]. J Extracell Vesicles, 2021, 10(14): e12175. DOI: 10.1002/jev2.12175.
|
| [10] |
EL Andaloussi S, Mäger I, Breakefield XO, et al. Extracellular vesicles: biology and emerging therapeutic opportunities[J]. Nat Rev Drug Discov, 2013, 12(5): 347-357. DOI: 10.1038/nrd3978.
|
| [11] |
Chen L, Zhang YH, Wang S, et al. Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways[J]. PLoS One, 2017, 12(9): e0184129. DOI: 10.1371/journal.pone.0184129.
|
| [12] |
Kanehisa M, Sato Y, Kawashima M, et al. KEGG as a reference resource for gene and protein annotation[J]. Nucleic Acids Res, 2016, 44(D1): D457-D462. DOI: 10.1093/nar/gkv1070.
|
| [13] |
Mistry J, Chuguransky S, Williams L, et al. Pfam: the protein families database in 2021[J]. Nucleic Acids Res, 2021, 49(D1): D412-D419. DOI: 10.1093/nar/gkaa913.
|
| [14] |
Vella LJ, Scicluna BJ, Cheng L, et al. A rigorous method to enrich for exosomes from brain tissue[J]. J Extracell Vesicles, 2017, 6(1): 1348885. DOI: 10.1080/20013078.2017.1348885.
|
| [15] |
Batagov AO, Kurochkin IV. Exosomes secreted by human cells transport largely mRNA fragments that are enriched in the 3'-untranslated regions[J]. Biol Direct, 2013, 8: 12. DOI: 10.1186/1745-6150-8-12.
|
| [16] |
Bolukbasi MF, Mizrak A, Ozdener GB, et al. miR-1289 and “zipcode”-like sequence enrich mRNAs in microvesicles[J]. Mol Ther Nucleic Acids, 2012, 1: e10. DOI: 10.1038/mtna.2011.2.
|
| [17] |
Nabhan JF, Hu R, Oh RS, et al. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein[J]. Proc Natl Acad Sci USA, 2012, 109(11): 4146-4151. DOI: 10.1073/pnas.1200448109.
|
| [18] |
Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs[J]. Nat Commun, 2013, 4: 2980. DOI: 10.1038/ncomms3980.
|
| [19] |
Matsumura T, Sugimachi K, Iinuma H, et al. Exosomal microRNA in serum is a novel biomarker of recurrence in human colorectal cancer[J]. Br J Cancer, 2015, 113(2): 275-281. DOI: 10.1038/bjc.2015.201.
|
| [20] |
Van Giau V, An SSA. Emergence of exosomal miRNAs as a diagnostic biomarker for Alzheimer's disease[J]. J Neurol Sci, 2016, 360: 141-152. DOI: 10.1016/j.jns.2015.12.005.
|
| [21] |
He G, Peng X, Wei S, et al. Exosomes in the hypoxic TME: from release, uptake and biofunctions to clinical applications[J]. Mol Cancer, 2022, 21(1): 19. DOI: 10.1186/s12943-021-01440-5.
|
| [22] |
Parolini I, Federici C, Raggi C, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells[J]. J Biol Chem, 2009, 284(49): 34211-34222. DOI: 10.1074/jbc.M109.041152.
|
| [23] |
唐晋元, 杨陈凤麟, 梁冬乐, 等. 外泌体在肝内胆管癌中的作用[J]. 临床肝胆病杂志, 2024, 40(1): 181-186. DOI: 10.12449/JCH240130.
|
| [24] |
Peng L, Sang H, Wei S, et al. circCUL2 regulates gastric cancer malignant transformation and cisplatin resistance by modulating autophagy activation via miR-142-3p/ROCK2[J]. Mol Cancer, 2020, 19(1): 156. DOI: 10.1186/s12943-020-01270-x.
|
| [25] |
Shang A, Gu C, Wang W, et al. Exosomal circPACRGL promotes progression of colorectal cancer via the miR-142-3p/miR-506-3p-TGF-β1 axis[J]. Mol Cancer, 2020, 19(1): 117. DOI: 10.1186/s12943-020-01235-0.
|
| [26] |
Tan YF, Chen ZY, Wang L, et al. miR-142-3p functions as an oncogene in prostate cancer by targeting FOXO1[J]. J Cancer, 2020, 11(6): 1614-1624. DOI: 10.7150/jca.41888.
|
| [27] |
Liang L, Fu J, Wang S, et al. miR-142-3p enhances chemosensitivity of breast cancer cells and inhibits autophagy by targeting HMGB1[J]. Acta Pharm Sin B, 2020, 10(6): 1036-1046. DOI: 10.1016/j.apsb.2019.11.009.
|
| [28] |
Mansoori B, Duijf PHG, Mohammadi A, et al. miR-142-3p targets HMGA2 and suppresses breast cancer malignancy[J]. Life Sci, 2021, 276: 119431. DOI: 10.1016/j.lfs.2021.119431.
|
| [29] |
MacKenzie TN, Mujumdar N, Banerjee S, et al. Triptolide induces the expression of miR-142-3p: a negative regulator of heat shock protein 70 and pancreatic cancer cell proliferation[J]. Mol Cancer Ther, 2013, 12(7): 1266-1275. DOI: 10.1158/1535-7163.MCT-12-1231.
|
| [30] |
Zhang X, Chen F, Huang P, et al. Exosome-depleted miR-148a-3p derived from hepatic stellate cells promotes tumor progression via ITGA5/PI3K/Akt axis in hepatocellular carcinoma[J]. Int J Biol Sci, 2022, 18(6): 2249-2260. DOI: 10.7150/ijbs.66184.
|
| [31] |
Liang L, Xu WY, Shen A, et al. Promoter methylation-regulated miR-148a-3p inhibits lung adenocarcinoma (LUAD) progression by targeting MAP3K9[J]. Acta Pharmacol Sin, 2022, 43(11): 2946-2955. DOI: 10.1038/s41401-022-00893-8.
|
| [32] |
Martino E, Balestrieri A, Aragona F, et al. miR-148a-3p promotes colorectal cancer cell ferroptosis by targeting SLC7A11[J]. Cancers, 2023, 15(17): 4342. DOI: 10.3390/cancers15174342.
|